www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesWillmore Funktional
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Willmore Funktional
Willmore Funktional < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Willmore Funktional: Idee
Status: (Frage) überfällig Status 
Datum: 17:38 Sa 18.07.2015
Autor: ivanhoe

Aufgabe
Berechne für [mm] $f_{\epsilon}: S^2 [/mm] -> [mm] \IR^3, f_{\epsilon}(p) [/mm] = (1+ [mm] \epsilon [/mm] u(p))p$, mit $u : [mm] S^2 [/mm] -> [mm] \IR [/mm] $ die erste Variation des Willmore Funktionals:

[mm] \bruch{d}{d\epsilon} W(f_\epsilon) |_{\epsilon = 0} [/mm]


wobei

W(f) = [mm] \bruch{1}{4} \integral_{S^2} H^2 d\mu_{g} [/mm]

mit $ g = [mm] f*\delta$, $\delta$ [/mm] die Standard Metrik, $H$ die mittlere Krümmung. [mm] $S^2$ [/mm] die Standard Sphäre im [mm] $\IR^3$. [/mm]


Hallo,

ich hoffe, jemand kann mir weiterhelfen, weil ich nicht weiß, wie ich diese Aufgabe lösen soll

Ich weiß nur, dass das Ergebnis so aussehen muss:

[mm] \Delta_{S^2}(\Delta_{S^2} [/mm] + 2) u


ich freue mich über jeden Tipp. Ich habe Probiert, die induzierte Metrik und alles, dass dazugehört, aufzuschreiben, aber ich habe nicht das Gefühl, dass das mich irgendwo hinführt.

Ich würde mich auch extrem freuen, wenn mir jemand ein Skript oder ein Buch empfehlen kann, in dem das vielleicht vorkommt.

Vielen Dank schonmal
Gruß
ivanhoe

        
Bezug
Willmore Funktional: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 20.07.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]