www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesWinkel, gleichseitiges Dreieck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Winkel, gleichseitiges Dreieck
Winkel, gleichseitiges Dreieck < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel, gleichseitiges Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:24 Mi 07.01.2009
Autor: dupline

Aufgabe
Ein Dreieck mit den Ecken [mm] \vec{0}, \vec{a}, \vec{b} [/mm] heißt gleichseitig, wenn [mm] ||\vec{a}|| [/mm] = [mm] ||\vec{b}||= ||\vec{b} [/mm] - [mm] \vec{a}||. [/mm]
Folgern Sie aus dieser Eigenschaft für den Cosinus des Winkels zwischen [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm]
[mm] cos(\vec{a}, \vec{b}) [/mm] = [mm] \bruch{1}{2}. [/mm]

Hallo zusammen,

ich schreib jetzt mal hin, was ich alles weiß:
Alle Winkel in dem Dreieck betragen also 60 °
den Winkel kann ich folgendermaßen ausrechnen:
[mm] \bruch{1}{2}=\bruch{a \odot b}{||\vec{a}||*||\vec{b}||} [/mm]
wobei ich ja statt [mm] ||\vec{a}|| [/mm] auch [mm] ||\vec{b}|| [/mm] oder [mm] ||\vec{b}-\vec{a}|| [/mm] einsetzen kann.
Wenn ich das dann ausschreibe, also mit [mm] \bruch{a_{1}b_{1}+a_{2}b_{2}}{\wurzel{a_{1}^2+a_{2}^2} * \wurzel{b_{1}^2+b_{2}^2}} [/mm] dann komme ich nach vielem "herumgerechne" leider auf kein Ergebnis.

Ist die Vorgehensweise überhaupt korrekt, oder gibt es einen Trick?

Vielen Dank schon jetzt.

        
Bezug
Winkel, gleichseitiges Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Mi 07.01.2009
Autor: M.Rex

Hallo

Du darfst erstmal nur verwenden, dass
"Ein Dreieck mit den Ecken $ [mm] \vec{0}, \vec{a}, \vec{b} [/mm] $ heißt gleichseitig, wenn $ [mm] ||\vec{a}|| [/mm] $ = $ [mm] ||\vec{b}||= ||\vec{b} [/mm] $ - $ [mm] \vec{a}||. [/mm] $"

Nimm dazu mal die allgemeine Formel für den Schnittwinkel [mm] \alpha [/mm] her.

[mm] <\vec{a};\vec{b}> [/mm] ist das Skalarprodukt

Also:

[mm] \cos(\alpha)=\bruch{<\vec{a};\vec{b}>}{|\vec{a}|*|\vec{b}|} [/mm]
[mm] =\bruch{a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}}{\wurzel{a_{1}²+a_{2}²+a_{3}²}*\wurzel{b_{1}²+b_{2}²+b_{3}²}} [/mm]
Jetzt nimm mal die Tatsache, dass [mm] |\vec{a}|=|\vec{b}|, [/mm] also [mm] \wurzel{b_{1}²+b_{2}²+b_{3}²}=\wurzel{a_{1}²+a_{2}²+a_{3}²} [/mm]

Also:
[mm] \bruch{a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}}{\wurzel{a_{1}²+a_{2}²+a_{3}²}*\wurzel{b_{1}²+b_{2}²+b_{3}²}} [/mm]
[mm] =\bruch{a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}}{\wurzel{a_{1}²+a_{2}²+a_{3}²}*\wurzel{a_{1}²+a_{2}²+a_{3}²}} [/mm]
[mm] =\bruch{a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}}{\wurzel{(a_{1}²+a_{2}²+a_{3}²)(a_{1}²+a_{2}²+a_{3}²)}} [/mm]
[mm] =\bruch{a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}}{\wurzel{(a_{1}²+a_{2}²+a_{3}²)²}} [/mm]
[mm] =\bruch{a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}}{a_{1}²+a_{2}²+a_{3}²} [/mm]

Versuch jetzt mal, das ganze noch ein wenig umzuformen, dass du [mm] \cos(\alpha)=\bruch{1}{2} [/mm] hast, denn dann gilt: [mm] \alpha=60° [/mm]

Marius


Bezug
                
Bezug
Winkel, gleichseitiges Dreieck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:13 Mi 07.01.2009
Autor: dupline

Hallo Marius,

danke für die Hilfe, das ganze ist mir soweit auch klar, ich habe jetzt auch versucht den Bruch zu vereinfachen, allerdings weiß ich nicht wie ich die b's aus dem Zähler bekommen kann.

Bringt es mir etwas den Zähler und Nenner (wieder) als Skalarprodukt zu schreiben? [mm] \bruch{a \odot b}{a \odot a} [/mm]

ich weiß dass der Nenner das doppelte vom Zähler darstellen soll (wegen dem [mm] \bruch{1}{2} [/mm] ) aber ich komm leider gar nicht weiter

danke nochmal

Bezug
                        
Bezug
Winkel, gleichseitiges Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Mi 07.01.2009
Autor: M.Rex

Hallo

> Hallo Marius,
>  
> danke für die Hilfe, das ganze ist mir soweit auch klar,
> ich habe jetzt auch versucht den Bruch zu vereinfachen,
> allerdings weiß ich nicht wie ich die b's aus dem Zähler
> bekommen kann.
>  
> Bringt es mir etwas den Zähler und Nenner (wieder) als
> Skalarprodukt zu schreiben? [mm] \bruch{a \odot b}{a \odot a}[/mm]

Das hilft auf jeden Fall. Versuche dann mal, einige Eigenschaften des Skalarproduktes zu nutzen.

Und überlege mal, dass [mm] \vec{b}=\vec{a}+\overrightarrow{AB} [/mm]
Ersetze das mal im Zähler, und nutze dann, dass:

[mm] <\vec{x}+\vec{y};\vec{z}> [/mm]
[mm] =<\vec{x};\vec{z}>+<\vec{y};\vec{z}> [/mm]

damit solltest du weiterkommen.

>  
> ich weiß dass der Nenner das doppelte vom Zähler darstellen
> soll (wegen dem [mm]\bruch{1}{2}[/mm] ) aber ich komm leider gar
> nicht weiter
>  
> danke nochmal

Marius

Bezug
                                
Bezug
Winkel, gleichseitiges Dreieck: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:26 Mi 07.01.2009
Autor: dupline

Danke für die vielen Tips bisher, aber ich steh mit dieser Aufgabe wohl auf Kriegsfuß.
Mir sind alle Schritte bisher klar, aber ich sehe immer den nächsten nicht, ich glaube ich mache es mir etwas zu leicht.

Also durch die Bi-Linearitäts-Eigenschaft kann ich dann folgendes schreiben:
[mm] \bruch {\vec{a}\odot(\vec{a}+\vec{AB})}{\vec{a}\odot\vec{a}} [/mm] = [mm] \bruch {(\vec{a}\odot\vec{a})+(\vec{a}\odot\vec{AB})}{\vec{a}\odot\vec{a}} [/mm]

kann ich dann schreiben:
= [mm] 1+\bruch {(\vec{a}\odot\vec{AB})}{\vec{a}\odot\vec{a}} [/mm]

dann könnte ich [mm] \vec{AB} [/mm] wieder durch [mm] (\vec{b}-\vec{a}) [/mm] ersetzen, aber
dann dreh ich mich im Kreis und komm letztendlich wieder auf [mm] \bruch{a \odot b}{a \odot a} [/mm]

???


Bezug
                                        
Bezug
Winkel, gleichseitiges Dreieck: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 09.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Winkel, gleichseitiges Dreieck: 3. Seite
Status: (Antwort) fertig Status 
Datum: 13:37 Mi 07.01.2009
Autor: Roadrunner

Hallo dupline!


Zudem musst Du auch noch ins Spiel bringen, dass die 3. Dreiecksseite dieselbe Länge hat (sonst wäre es nur ein gleichschenkliges und kein gleichseitiges Dreieck):
[mm] $$\left\| \ \vec{a}-\vec{b} \ \right\| [/mm] \ = \ [mm] \wurzel{\left(a_1-b_1\right)^2+\left(a_2-b_2\right)^2+\left(a_3-b_3\right)^2} [/mm] \ = \ [mm] \wurzel{a_1^2+a_2^2+a_3^2} [/mm] \ = \ [mm] \left\| \ \vec{a} \ \right\|$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
Winkel, gleichseitiges Dreieck: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:35 Mi 07.01.2009
Autor: Jackson12

Hallo Marius,

ich habe genau das gleiche Problem! Wenn ich es nun umforme komme ich auf [mm] cos(\alpha)= [/mm] 1 ???

Kannst du noch einen Tipp abgeben?
Danke
Jackson

Bezug
                        
Bezug
Winkel, gleichseitiges Dreieck: Rechenweg
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:41 Do 08.01.2009
Autor: Roadrunner

Hallo Jackson,

[willkommenmr] !!


Bitte poste doch auch Deine Rechnungen, damit wir den Fehler finden können.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]