www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungWinkel von den Diagonalen!"
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - Winkel von den Diagonalen!"
Winkel von den Diagonalen!" < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkel von den Diagonalen!": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Sa 08.04.2006
Autor: MrS

Hi,

ich habe ein Parallelogramm gegeben!
A(6|1|2) B(8|8|1) C(2|7|4) D(0|0|5)

jetzt möchte ich den winkel berechnen, wie sich die diagonalen schneiden!

-------
Da bin ich wie folgt vorgegangen

cos( [mm] \alpha) [/mm] =   [mm] \bruch{\overrightarrow{AC}* \overrightarrow{BD}}{ \overrightarrow{|AC|} \overrightarrow{BD}} [/mm]

==>

cos( [mm] \alpha) [/mm] =   [mm] \bruch{ \vektor{-4 \\ 6 \\ 2}* \vektor{-8 \\ -8 \\ 4}}{ (2* \wurzel{14})* 12} [/mm]  

[mm] \alpha [/mm] = 95,11°

kann mir jemand vielleicht das ergebnis bestätigen?
mit freundlichen grüßen
mrs







        
Bezug
Winkel von den Diagonalen!": Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Sa 08.04.2006
Autor: prfk

Also das kannst du doch leicht selber prüfen! Einfach aufmalen und mit nem Geodreieck nachmessen...
Ich guck mir die Aufgabe mal an und melde mich dann wieder.

Gruß
prfk

EDIT: Sorry.. Ist ja 3dimensional... Dann wirds schwer mit zeichen... Wie gesagt ich rechne mal...


Bezug
                
Bezug
Winkel von den Diagonalen!": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 Sa 08.04.2006
Autor: prfk

Ich bin gerade zu dem Ergebnis gekommen, dass man das ganze doch zeichen kann. Die Lage im Raum ist ja unerheblich für den Schnittwinkel der Diagonalen.

Man kann also eine Dimension weglassen. Jetzt muss man sich nur über legen ob x, y oder z.
Also Koordinatensystem zeichen und loslegen. Wenn du die 4 Punkte Eingezeichnet hast, und einen "Strich" bekommst, wenn du sie verbindest, weißt du, dass du von der Seite auf das Parallelogramm schaust.
Wenn du ein Parallelogramm siehst, weißt du dass du die richtig koordinate weggelassen hast.

Ich hab die z-Koordinate weggelassen und gleich glück gehabt. Ich sehe ein Parallelogramm und habe den Winkel gemessen.

Hab allerdings 101° bzw 79° abgelesen...

Bezug
                        
Bezug
Winkel von den Diagonalen!": Fehler!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:07 Sa 08.04.2006
Autor: ardik

Hallo,

> Ich bin gerade zu dem Ergebnis gekommen, dass man das ganze
> doch zeichen kann. Die Lage im Raum ist ja unerheblich für
> den Schnittwinkel der Diagonalen.

Ja, aber:

> Man kann also eine Dimension weglassen.

Neiiin!

Damit projizierst Du das schräg im Raum liegende Parallelogramm auf eine Koordinaten-Ebene.
Dadurch verändern sich natürlich die Winkel (und die Seitenlängen)!

Schöne Grüße,
ardik

Bezug
                                
Bezug
Winkel von den Diagonalen!": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:53 Sa 08.04.2006
Autor: prfk

Jo, hast recht! Das klappt leider doch nicht in allen Fällen...
Danke der Korrektur!

Bezug
        
Bezug
Winkel von den Diagonalen!": Antwort
Status: (Antwort) fertig Status 
Datum: 15:18 Sa 08.04.2006
Autor: Superente

Hallo,

deine Rechnung ist richtig, das Ergebnis stimmt auch (in der Formel fehlen aber die Betragsstriche im Nenner (|BD|)).

Doch hast du irgendwie seltsame Vektoren gewählt.
Ein Parallelogramm beschriftet man immer gegen den Uhrzeigersinn. Somit ist AC und BD nie mit einander verbunden. A wäre unten rechts die Ecke und C oben rechts. Damit es stimmt musst du die Vektoren AB und AD nehmen. Dann bekommst du am Ende für den Winkel  [mm] \alpha [/mm] = 116,19.


Edit: Ich sehe gerade, dass du die Schnittwinkel der Diagonalen suchst. Damit stimmt deine Rechnung, und die gewählten Vektoren ;).

Bezug
                
Bezug
Winkel von den Diagonalen!": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:48 So 09.04.2006
Autor: MrS

In der Lösung steht jedoch um die gesamte Rechnung noch einen Betrag das sieht dann so aus !

cos ( [mm] \alpha [/mm] ) =   [mm] \vmat{\bruch{\overrightarrow{AC}\cdot{} \overrightarrow{BD}}{ \overrightarrow{|AC|} \overrightarrow{BD}}} [/mm]

kann mir einer sagen was dies zu bedeuten hat? (dadurch erhalte ich auch ein anderes ergebnis)

Bezug
                        
Bezug
Winkel von den Diagonalen!": Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 So 09.04.2006
Autor: DaMenge

Hi,

es gilt doch : [mm] $cos(\alpha)=-cos(180-\alpha)$ [/mm]

die Diagonalen haben doch zwei Schnittwinkel - wenn du den äußeren Betrag dazu schreibst erhälst du immer einen positiven Wert und somit den kleineren Winkel (bis 90° ist der cos ja positiv...)

der Unterschied ist also einfach, dass man sich für den kleineren Winkel interessiert und durch obige Gleichung siehst du, dass es so auch klappt.

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]