www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMechanikWinkelgeschwindigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mechanik" - Winkelgeschwindigkeit
Winkelgeschwindigkeit < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Winkelgeschwindigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Di 16.10.2012
Autor: Mathe-Andi

Hallo,

wir hatten heute die Winkelgeschwindigkeit.

(Im folgenden: w statt kleines Omega, Winkel alpha statt Winkel phi).

Es wurde gesagt, dass die Winkelgeschwindigkeit w die erste Ableitung des Winkels [mm] \alpha [/mm] nach der Zeit ist.

w= [mm] \dot \alpha=\bruch{d\alpha}{dt} [/mm]

Das heißt ich kann die Funktion [mm] w(t)=\bruch{\alpha}{t} [/mm] (so richtig?) aufleiten und erhalte [mm] \alpha(t) [/mm] ?

Lasse ich fürs integrieren das infinitesimal-d weg?

Ich habe raus für

[mm] \alpha(t)= \integral [/mm] w(t)dt = [mm] \bruch{(\alpha)^{2}}{t(\alpha+t)} [/mm] +c

Das ist wahrscheinlich nicht richtig. Wie schauts denn richtig aus?





        
Bezug
Winkelgeschwindigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Di 16.10.2012
Autor: franzzink

Hallo Mathe-Andi,

> Hallo,
>  
> wir hatten heute die Winkelgeschwindigkeit.
>  
> (Im folgenden: w statt kleines Omega, Winkel alpha statt
> Winkel phi).
>  
> Es wurde gesagt, dass die Winkelgeschwindigkeit w die erste
> Ableitung des Winkels [mm]\alpha[/mm] nach der Zeit ist.
>  
> w= [mm]\dot \alpha=\bruch{d\alpha}{dt}[/mm]

Wieso ersetzt du die Variablen? Schreibe doch einfach:

$ [mm] \omega [/mm] = [mm] \dot \varphi [/mm] = [mm] \bruch{d \varphi}{dt} [/mm] $

> Das heißt ich kann die Funktion [mm]w(t)=\bruch{\alpha}{t}[/mm] (so
> richtig?)

Nein, dies stimmt im allgemeinen nicht:

Für eine translatorische Bewegung gilt ja:    $ v = [mm] \dot [/mm] x = [mm] \bruch{dx}{dt} [/mm] $

NUR bei KONSTANTER Geschwindigkeit (ohne Beschleunigung) gilt:   $ v = [mm] \bruch{x}{t} [/mm] $ (im allgemeinen aber nicht)

Ganz genauso gilt $ [mm] \omega [/mm] = [mm] \bruch{\varphi}{t}$ [/mm] NUR für Bewegungen mit KONSTANTER Winkelgeschwindigkeit, ansonsten nicht.

> aufleiten und erhalte [mm]\alpha(t)[/mm] ?

Bei der geradlinigen Bewegung eines Massenpunktes gilt, dass Masse mal Beschleunigung gleich der Summe aller Kräfte ist:

$m [mm] \ddot [/mm] x = [mm] \summe_{i}^{} F_i$ [/mm]

Durch zweimaliges Integrieren kann man daraus $ x(t) $ berechnen.


Für eine rotatorische Bewegung gilt ganz analog:

[mm] $\Theta \ddot \varphi [/mm] = [mm] \summe_{i}^{} M_i [/mm] $   mit dem Massenträgheitsmoment [mm] $\Theta$ [/mm] und den Drehmomenten [mm] $M_i$. [/mm]

Durch zweimaliges Integrieren kann hieraus nun [mm] $\varphi(t)$ [/mm] berechnet werden.
  

> Lasse ich fürs integrieren das infinitesimal-d weg?
>  
> Ich habe raus für
>  
> [mm]\alpha(t)= \integral[/mm] w(t)dt =
> [mm]\bruch{(\alpha)^{2}}{t(\alpha+t)}[/mm] +c

Das Aufstellen dieser Gleichung macht nur Sinn, wenn man den zeitlichen Verlauf der Winkelgeschwindigkeit [mm] $\dot \varphi [/mm] (t)$ kennt. Ist dieser bekannt, kann man durch Integrieren den Winkel $ [mm] \varphi(t) [/mm] $ berechnen:

[mm] $\dot \varphi [/mm] = [mm] \bruch{d \varphi}{dt} \Rightarrow \varphi [/mm] (t) = [mm] \integral_{}^{}{\dot \varphi (t) dt}$ [/mm]

> Das ist wahrscheinlich nicht richtig. Wie schauts denn
> richtig aus?

Wie gesagt, um eine konkrete Funktion hierfür angeben zu können, muss [mm] $\dot \varphi [/mm] (t)$ bekannt sein...


Grüße
franzzink

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]