Vektorrechnung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:17 Mi 08.02.2006 | Autor: | Sebb |
Aufgabe | Gegeben sind die drei Punkte P(3/0/2), Q(-2/1/-4) und R(2/1/-4) auf die sich folgende Aufgaben beziehen:
a) die Parallele zu QR durch Mittelpunkt von PQ und eine Angabe zu deren Lage
b) der Normalenvektor zur Ebene P,Q und R
c) die Gleichung der zu QR senkrechten Ebene durch R und der Abstand der Punkte P und Q von dieser |
Hallo,
ich schreib morgen Mathe Klausur und komm irgendwie bei der Aufgabe auf keinen grünen Zweig. Wäre super wenn ihr mir dabei helfen könntet!
Danke schonmal!
Gruß Sebb
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Sebastian!
> Gegeben sind die drei Punkte P(3/0/2), Q(-2/1/-4) und
> R(2/1/-4) auf die sich folgende Aufgaben beziehen:
> a) die Parallele zu QR durch Mittelpunkt von PQ und eine
> Angabe zu deren Lage
Die Gerade soll parallel zu QR sein, also kannst du [mm] \overrightarrow{QR} [/mm] als Richtungsvektor benutzen. Dann nimmst du als Aufhängepunkt den Mittelpunkt von [mm] \overline{PQ}als [/mm] Antragepunkt.
Die besondere Lage ergibt sich aus dem Richtungsvektor, der (wie du wohl ausgerechnet hast) zwei Nuller beinhaltet...d.h. die Gerade ist parallel zu einer der Koordinatenachsen.
> b) der Normalenvektor zur Ebene P,Q und R
Ich weiß nicht, ob ihr schon das Kreuzprodukt kennen gelernt habt, ansonsten noch einmal der Weg zu Fuß:
Der Normalenvektor muss orthogonal(senkrecht) zu zwei Richtungsvektoren stehen. Da du [mm] \overrightarrow{QR} [/mm] schon kennst würde ich mir als zweiten Richtungsvektor [mm] \overrightarrow{QP} [/mm] ausrechnen.
Dann ergeben sich folgende Gleichungen:
I) [mm] \vec{n} \*\vec{QR}=0
[/mm]
[mm] II)\vec{n}\*\vec{QP}=0
[/mm]
Dieses Gleichungssystem ist unterbesetzt, dh es gibt zu viele Variablen. Das führt dazu, dass du am Ende eine Abhängigkeit herausbekommst (ich habe [mm] 6n_{3}=n_{2} [/mm] herausbekommen), mit der du einen beliebigen Normalenvektor erstellen kannst.
> c) die Gleichung der zu QR senkrechten Ebene durch R und
> der Abstand der Punkte P und Q von dieser
Eine Ebene, die senkrecht zu einem Vektor steht, hat diesen als Normalenvektor.
Du kennst sicherlich die Punkt-Normalenform einer Ebenengleichung. In die kannst du nämlich R einsetzten und schon hast du deine Ebenengleichung. (Meine Gleichung lautet: [mm] x_{1}=2)
[/mm]
Da die Ebenengleichung nur [mm] x_{1} [/mm] beinhaltet, kannst du ganz leicht den Abstand zu den anderen Punkten berechnen.
Mfg
Matthias
|
|
|
|