www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenEinführung Analysis (Schule)Wohldefiniertheit Abbildung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Einführung Analysis (Schule)" - Wohldefiniertheit Abbildung
Wohldefiniertheit Abbildung < Einführung Analysis < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Einführung Analysis (Schule)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wohldefiniertheit Abbildung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:36 Do 24.12.2015
Autor: abinator123

Aufgabe
Es sei A={z [mm] \in \IC [/mm] : 0 < Re(z) < 1} [mm] \subseteq \IC [/mm] und B={z [mm] \in \IC [/mm] : 0 < Re(z)} [mm] \subseteq \IC [/mm] und f:A [mm] \to [/mm] B, w [mm] \mapsto \bruch{1}{w} [/mm] + 1

Zeige, dass diese Abbildung wohldefiniert ist.




Hallo zusammen,

ich weiß was wohldefiniertheit bedeutet. Allgemein heißt es, dass jedes w [mm] \in [/mm] A f(w) [mm] \in [/mm] B ist. Oder anders: f ist eine Abbildung, also linkstotal und rechtseindeutig.

linkstotal: [mm] \forall [/mm] w [mm] \in [/mm] A existiert f(w) [mm] \in [/mm] B.
rechtseindeutig: wenn w [mm] \in [/mm] A, y1 und y2 [mm] \in [/mm] B mit f(w)=y1 und f(w) = y1 [mm] \Rightarrow [/mm] y1 = y2.

Vom Gefühl her ist f eine Abbildung, allerdings weiß ich nicht so richtig, wie ich das formal richtig aufschreibe und damit auch beweisen kann. Ich würde es auch sehr gerne selber hinbekommen, aber weiß nicht so recht, wie ich starten kann...


Edit:
Ich versuche es einfach mal:

Linkstotalität: Sei w [mm] \in [/mm] A.
Es gilt Re(w) [mm] \in [/mm] (0,1) und daraus folgt Re(w) > 0.
Weiter gilt: Re(1 + [mm] \bruch{1}{w}) [/mm] = 1 +  [mm] \bruch{1}{Re(w)} [/mm] ist sicherlich > 1 und damit gilt f(w) [mm] \in [/mm] B für alle w [mm] \in [/mm] A (da w ja beliebig war).
=> f ist linkstotal.

Rechtseindeutigkeit: sei v,w [mm] \in [/mm] A mit v=w. z.Z.: f(v) = f(w)
Es gilt:
1 + [mm] \bruch{1}{v} [/mm] = 1 + [mm] \bruch{1}{w} [/mm]
[mm] \gdw [/mm]
[mm] \bruch{1}{v} [/mm] = [mm] \bruch{1}{w} [/mm]
[mm] \gdw [/mm]
v = w

[mm] \Rightarrow [/mm] f(v) = f(w)
[mm] \Rightarrow [/mm] f ist rechtseindeutig.

Insgesamt [mm] \Rightarrow [/mm] f ist wohldefiniert.

Passt das so?

        
Bezug
Wohldefiniertheit Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:21 Do 24.12.2015
Autor: statler

Hallo!

> Es sei A = {z [mm] \in \IC [/mm] : 0 < Re(z) < 1 } [mm]\subseteq \IC[/mm]
> und B = {z [mm] \in \IC [/mm] : 0 < Re(z)} [mm]\subseteq \IC[/mm] und
> f:A [mm]\to[/mm] B, w [mm]\mapsto \bruch{1}{w}[/mm]
> + 1
>  
> Zeige, dass diese Abbildung wohldefiniert ist.
>  
>
>
> Hallo zusammen,
>  
> ich weiß was wohldefiniertheit bedeutet. Allgemein heißt
> es, dass jedes w [mm]\in[/mm] A f(w) [mm]\in[/mm] B ist. Oder anders: f ist
> eine Abbildung, also linkstotal und rechtseindeutig.
>  
> linkstotal: [mm]\forall[/mm] w [mm]\in[/mm] A existiert f(w) [mm]\in[/mm] B.
>  rechtseindeutig: wenn w [mm]\in[/mm] A, y1 und y2 [mm]\in[/mm] B mit f(w)=y1
> und f(w) = y1 [mm]\Rightarrow[/mm] y1 = y2.
>  
> Vom Gefühl her ist f eine Abbildung, allerdings weiß ich
> nicht so richtig, wie ich das formal richtig aufschreibe
> und damit auch beweisen kann. Ich würde es auch sehr gerne
> selber hinbekommen, aber weiß nicht so recht, wie ich
> starten kann...
>  
>
> Edit:
>  Ich versuche es einfach mal:
>  
> Linkstotalität: Sei w [mm]\in[/mm] A.
> Es gilt Re(w) [mm]\in[/mm] (0,1) und daraus folgt Re(w) > 0.
>  Weiter gilt: Re(1 + [mm]\bruch{1}{w})[/mm] = 1 +  [mm]\bruch{1}{Re(w)}[/mm]

Das kann ich so kaum glauben! Was ist denn das Inverse zu 1+i? Der Realteil des Inversen liegt nicht mal in der Nähe von 1.

> ist sicherlich > 1 und damit gilt f(w) [mm]\in[/mm] B für alle w
> [mm]\in[/mm] A (da w ja beliebig war).
>  => f ist linkstotal.

>  
> Rechtseindeutigkeit: sei v,w [mm]\in[/mm] A mit v=w. z.Z.: f(v) =
> f(w)
>  Es gilt:
> 1 + [mm]\bruch{1}{v}[/mm] = 1 + [mm]\bruch{1}{w}[/mm]
>  [mm]\gdw[/mm]
>  [mm]\bruch{1}{v}[/mm] = [mm]\bruch{1}{w}[/mm]
>  [mm]\gdw[/mm]
>  v = w
>  
> [mm]\Rightarrow[/mm] f(v) = f(w)
>  [mm]\Rightarrow[/mm] f ist rechtseindeutig.

Dieser Argumentation kann ich mich anschließen.

>  
> Insgesamt [mm]\Rightarrow[/mm] f ist wohldefiniert.
>  
> Passt das so?

Noch nicht.
Frohe Weihnachten
Dieter


Bezug
                
Bezug
Wohldefiniertheit Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Fr 25.12.2015
Autor: abinator123


> > Linkstotalität: Sei w [mm]\in[/mm] A.
> > Es gilt Re(w) [mm]\in[/mm] (0,1) und daraus folgt Re(w) > 0.
>  >  Weiter gilt: Re(1 + [mm]\bruch{1}{w})[/mm] = 1 +  
> [mm]\bruch{1}{Re(w)}[/mm]
>  
> Das kann ich so kaum glauben! Was ist denn das Inverse zu
> 1+i? Der Realteil des Inversen liegt nicht mal in der Nähe
> von 1.
>  
> > ist sicherlich > 1 und damit gilt f(w) [mm]\in[/mm] B für alle w
> > [mm]\in[/mm] A (da w ja beliebig war).
>  >  => f ist linkstotal.

Frohe Weihnachten zusammen,

da hast Du recht Dieter.

Das Inverse zu a = 1+1i ist [mm] a^{-1} [/mm] = [mm] \bruch{1-1i}{2}, [/mm] es gilt a * [mm] a^{-1} [/mm] = 1+0i.

Dann versuche ich zu verbessern:
Sei w [mm] \in [/mm] A. (*w sei das komplex konjugierte zu w)
Es gilt Re(w) [mm] \in [/mm] (0,1) => w [mm] \not= [/mm] 0
Weiter gilt: 1 + [mm] \bruch{1}{w} [/mm] = 1 + [mm] \bruch{w\*}{|w|^{2}} [/mm]
Der Realteil von w und w* sind identisch. Der Betrag einer komplexen Zahl zum Quadrat ist sicherlich > 0, also auch der Realteil.
Damit folgt doch, f(w) [mm] \in [/mm] B für alle w [mm] \in [/mm] A (da w ja beliebig war).
=> f ist linkstotal.


Bezug
                        
Bezug
Wohldefiniertheit Abbildung: Naja, ...
Status: (Antwort) fertig Status 
Datum: 18:18 Fr 25.12.2015
Autor: statler

... das ist noch nicht so richtig schön hingeschrieben, aber da Weihnachten ist, will ich es gut sein lassen.
Die Rechtseindeutigkeit ist so offensichtlich, daß Fred einen Beweis sogar für überflüssig hält.
Gruß aus HH
Dieter

Bezug
                                
Bezug
Wohldefiniertheit Abbildung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Fr 25.12.2015
Autor: abinator123

Hi,
ich würde das ganze schon ganz gerne "sauber" hinbekommen, allein für das Verständnis.
Was ist denn unsauber? Die Idee mit dem komplex konjugierten zu erweitern ist ja erstmal denke ich der richtige weg. Was fehlt denn an der Argumentation? :)
Ich möchte ja auch mal in den Genuss kommen, was ordentlich verstanden und niedergeschrieben zu haben.

Viele Grüße,
Thomas

Bezug
                                        
Bezug
Wohldefiniertheit Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Fr 25.12.2015
Autor: statler

- siehe meinen Vorschlag -

Bezug
                        
Bezug
Wohldefiniertheit Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Fr 25.12.2015
Autor: statler

Sei w [mm]\in[/mm] A und w* sei die zu w konjugierte Zahl.
Es gilt Re(w) [mm]\in[/mm] (0,1) => w [mm]\not=[/mm] 0
und weiter [mm] |w|^{2} [/mm] > 0.
Damit ist  Re (1 + [mm] \bruch{1}{w}) [/mm] = Re(1) + [mm] Re(\bruch{1}{w}) [/mm] = 1 + [mm] Re(\bruch{w\*}{|w|^{2}}) [/mm]  = 1 + [mm] \bruch{1}{|w|^{2}}*Re(w\*) [/mm] = 1 + [mm] \bruch{1}{|w|^{2}}*Re(w) [/mm] > 1 > 0.


Bezug
                                
Bezug
Wohldefiniertheit Abbildung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Fr 25.12.2015
Autor: abinator123

Dankeschön und weiterhin schöne Weihnachtstage!

Bezug
        
Bezug
Wohldefiniertheit Abbildung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Do 24.12.2015
Autor: fred97

In meinen Augen ist nur zu zeigen:

   aus 0 < Re(w) < 1  folgt  [mm] Re(\bruch{1}{w}+ [/mm] 1)>0.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Einführung Analysis (Schule)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]