www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesWohlordnung, Antikette, etc.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Wohlordnung, Antikette, etc.
Wohlordnung, Antikette, etc. < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wohlordnung, Antikette, etc.: Vier Aufgaben
Status: (Frage) überfällig Status 
Datum: 14:29 Fr 15.12.2006
Autor: bounded

Aufgabe
1)
Seien M und N disjunkte, wohlgeordnete Mengen. Definiere eine Wohlordnung auf der Vereinigung M und N.

2)
Definiere 3 verschiedene Wohlordnungen auf der Menge der ganzen Zahlen.

3)
Eine Teilmenge L einer partiell geordneten Menge M heißt Antikette, falls die Einschränkung der partiellen Ordnung von M auf L die Gleichheit ist.
Zeige, dass die bezüglich Inklusion partiell geordnete Menge aller Antiketten von M mindestens ein maximales Element hat.

4)
Eine Teilmenge T eines euklidischen Raumes V heißt orthogonal, falls ihre Elemente verschieden von 0 und paarweise orthogonal sind. Zeige, dass T linear unabhängig ist und dass die bezüglich Inklusion partiell geordnete Menge aller orthogonalen Teilmengen von V mindestens ein maximales Element hat. Sind diese immer Basen von V ?

Hallo,
die richtigen Lösungen wären sehr wichtig für mich.
falls mir jemand helfen kann danke ich schonmal sehr!

DAAAANKE !!!!
gruß, dycke

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.uni-protokolle.de/foren/viewtopic.php?p=761250#761250

        
Bezug
Wohlordnung, Antikette, etc.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Do 21.12.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]