www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieWürfel geschnitten mit Parabel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Würfel geschnitten mit Parabel
Würfel geschnitten mit Parabel < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Würfel geschnitten mit Parabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Sa 15.11.2008
Autor: BlubbBlubb

Aufgabe
Betrachte den Würfel

W:= [mm] [0,1]^3 [/mm] = {(x,y,z) [mm] \in \IR^3 [/mm] | 0 [mm] \le [/mm] x,y,z [mm] \le [/mm] 1}

P:= [mm] {(x,y,z)\in \IR^3|0 \le z \le x^2+y^2} [/mm]

a) Man skizziere W und P
b) Man berechne das Volumen von W [mm] \cap [/mm] P
c) Man berechne das Volumen von [mm] W\P [/mm]

also gut meine skizze kann ich hier nicht iwie zeigen,also fang ich mal mit aufgabenteil b an.

ich hab momentan nur so eine grobe idee, aber ich hab noch einige schwierigkeiten bzw fehlende übungen mit umgang mit doppelintegralen.

[mm] \integral_0^1 \integral_0^1 x^2 +y^2 [/mm] dy dx

dies würde wenn ich mich nicht irre das volumen beschreiben das unterhalb der dreidimensionale parabel verläuft.  

also hab ich mir gedacht ich ziehe das volumen des quaders von dem volumen unterhalb der parabel ab und erhalte die schnittmenge zwischen parabel und quader.



[mm] \integral_0^1 \integral_0^1 [/mm] 1 dy dx - [mm] \integral_0^1 \integral_0^1 x^2 +y^2 [/mm] dy dx


aber dies erscheint mir nicht ganz richtig weil wenn ich mir beispielsweise einen zweidimensionalen abschnitt anschaue zum beispiel x-z ebene und zwar bei y = 0,5 oder 0,7 oder wo auch immer dann würd ich ja mit dem [mm] \integral_0^1 x^2 [/mm] dx mit der parabel bei x=1 außerhalb der rechteckhöhe von 1 sein und würde dann ein volumen unterhalb der parabale haben  dass auch teilweise ausserhalb des rechtecks ist und dann könnte ich nicht einfach das volumen des rechtecks minus dem der parabel rechnen um die schnittenge beider zu haben. hmm ich weiß nicht ob ihr grad mein problem verstehen könnt mir fällt das grad voll schwer das in worte zu fassen ohne einer skizze hier.




        
Bezug
Würfel geschnitten mit Parabel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Sa 15.11.2008
Autor: abakus


> Betrachte den Würfel
>
> W:= [mm][0,1]^3[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= {(x,y,z) [mm]\in \IR^3[/mm] | 0 [mm]\le[/mm] x,y,z [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

1}

>  
> P:= [mm]{(x,y,z)\in \IR^3|0 \le z \le x^2+y^2}[/mm]
>  
> a) Man skizziere W und P
>  b) Man berechne das Volumen von W [mm]\cap[/mm] P
>  c) Man berechne das Volumen von [mm]W\P[/mm]
>  also gut meine skizze kann ich hier nicht iwie zeigen,also
> fang ich mal mit aufgabenteil b an.
>  
> ich hab momentan nur so eine grobe idee, aber ich hab noch
> einige schwierigkeiten bzw fehlende übungen mit umgang mit
> doppelintegralen.
>  
> [mm]\integral_0^1 \integral_0^1 x^2 +y^2[/mm] dy dx
>
> dies würde wenn ich mich nicht irre das volumen beschreiben
> das unterhalb der dreidimensionale parabel verläuft.  
>
> also hab ich mir gedacht ich ziehe das volumen des quaders
> von dem volumen unterhalb der parabel ab und erhalte die
> schnittmenge zwischen parabel und quader.

Hallo,
bei P handelt es sich um einen Rotationskörper. Die Parabel [mm] z=x^2 [/mm] rotiert um die z-Achse. Du brauchst also keine Doppelintegrale, sondern nur die Volumenformel für Rotationskörper.  Der Schnitt mit W reduziert diesen Rotationskörper auf ein Viertel seines Volumens (die restlichen drei Viertel liegen im 2., 3. bzw. 4. Oktanten.
Gruß Abakus

>
>
>
> [mm]\integral_0^1 \integral_0^1[/mm] 1 dy dx - [mm]\integral_0^1 \integral_0^1 x^2 +y^2[/mm]
> dy dx
>
>
> aber dies erscheint mir nicht ganz richtig weil wenn ich
> mir beispielsweise einen zweidimensionalen abschnitt
> anschaue zum beispiel x-z ebene und zwar bei y = 0,5 oder
> 0,7 oder wo auch immer dann würd ich ja mit dem
> [mm]\integral_0^1 x^2[/mm] dx mit der parabel bei x=1 außerhalb der
> rechteckhöhe von 1 sein und würde dann ein volumen
> unterhalb der parabale haben  dass auch teilweise
> ausserhalb des rechtecks ist und dann könnte ich nicht
> einfach das volumen des rechtecks minus dem der parabel
> rechnen um die schnittenge beider zu haben. hmm ich weiß
> nicht ob ihr grad mein problem verstehen könnt mir fällt
> das grad voll schwer das in worte zu fassen ohne einer
> skizze hier.
>
>
>  


Bezug
                
Bezug
Würfel geschnitten mit Parabel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 So 16.11.2008
Autor: BlubbBlubb

also gut mein ergebnis sieht dann folgendermaßen aus:

zu b):

Volumen von P:= [mm] \bruch{1}{4}*\pi*\integral_0^1 \wurzel{z}^2 [/mm] dz = [mm] \bruch{1}{4} [/mm] * [mm] \pi [/mm] * [mm] \integral_0^1 [/mm] z dz = [mm] \bruch{\pi}{8} [/mm]

zu c)

Volumen des Würfels:

1*1*1=1

also:

V_Wuerfel-V_Parabel = 1 - [mm] \bruch{\pi}{8} [/mm] = [mm] \bruch{8-\pi}{8} [/mm]

ist die aufgabe so richtig gelöst?


Bezug
                        
Bezug
Würfel geschnitten mit Parabel: Aufgabe1
Status: (Antwort) fertig Status 
Datum: 20:30 So 16.11.2008
Autor: xxyy

Hallo,

ich habe das mit der Formel Rotationsparaboloid gelöst, das geht auch
Formel V=(1/2)*pi*a²*h²

b) Vp=(1/2)*pi
     [mm] W\P= [/mm] (pi/3)*(1/4)=pi/8
c)  habe ich so wie du

sorry ich bin neu hier , und mich mit den einfügen der zeich vertraut mache

ich glaube wir haben bei dem gleichem proffessor

es sind die gleichen aufgaben

Bezug
                                
Bezug
Würfel geschnitten mit Parabel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:35 So 16.11.2008
Autor: BlubbBlubb

ja hab bei wedhorn... ja wir haben dasselbe ergebnis das ist dann schonmal gut

Bezug
                                        
Bezug
Würfel geschnitten mit Parabel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:51 So 16.11.2008
Autor: xxyy

genau wedhorn!!!
Das ergebnis ist richtig bei a)und b)

Bezug
                                        
Bezug
Würfel geschnitten mit Parabel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:44 So 16.11.2008
Autor: xxyy

Wir können uns gerne morgen treffen bevor wir die aufgaben abgeben müssen
Ich habe es gerade versucht mit den zeichen, aber klappt micht!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]