Würfeln < stoch. Prozesse < Stochastik < Hochschule < Mathe < Vorhilfe
|
Hallo,
es geht um folgende Aufgabe: Wie oft muss mit einem idealen Würfel geworfen werden, bis wieder die Zahl des 1. Wurfes auftritt?
Als erstes ist nach der Verteilung gefragt. Hier wäre meine Antwort, dass es sich um eine Binomialverteilung handelt mit [mm] p=\frac{1}{6} [/mm] (für die Zahl des 1. Wurfes) und [mm] q=\frac{5}{6} [/mm] (für alle anderen Zahlen).
Nun würde ich einfach sagen, dass ja irgendweine Zahl im 1. Wurf auftritt. O.B.d.A kann man hier die 1 nehmen. Wie berechne ich nun, wie oft ich würfeln muss, bis diese Zahl wieder auftritt. Mein Ansatz würde über die Verteilung gehen (X ist die Zufallsvariable, die angibt, wie oft die 1 in n Würfen vorkommt):
[mm] P(X=1)=\vektor{n \\ 1}p*(1-p)^{n-1}
[/mm]
Die wahrscheinlichkeit, dass die 1 genau einmal vorkommt soll 1 sein, also [mm] P(X=1)=\vektor{n \\ 1}p*(1-p)^{n-1}=1 [/mm] dies müsste ich dann nach n auflösen.
Ist der Ansatz so in Ordnung?
mfg
piccolo
|
|
|
|
> Hallo,
>
> es geht um folgende Aufgabe: Wie oft muss mit einem idealen
> Würfel geworfen werden, bis wieder die Zahl des 1. Wurfes
> auftritt?
>
> Als erstes ist nach der Verteilung gefragt. Hier wäre
> meine Antwort, dass es sich um eine Binomialverteilung
> handelt mit [mm]p=\frac{1}{6}[/mm] (für die Zahl des 1. Wurfes) und
> [mm]q=\frac{5}{6}[/mm] (für alle anderen Zahlen).
Die Binimialverteilung passt hier nicht, da dabei die Zahl n der Würfe vorgegeben ist. Bei der Aufgabenstellung hängt die Zahl der benötigten Würfe aber von den gewürfelten Augenzahle ab.
Die passenede Verteilung dazu wäre die geometrische Verteilung (mit p=1/6).
>
> Nun würde ich einfach sagen, dass ja irgendweine Zahl im
> 1. Wurf auftritt. O.B.d.A kann man hier die 1 nehmen.
Der Ansatz ist ok, für die Wahrscheinlichkeit spielt es keine Rolle, welches die betrachtete erste Augenzahl ist.
> Wie
> berechne ich nun, wie oft ich würfeln muss, bis diese Zahl
> wieder auftritt. Mein Ansatz würde über die Verteilung
> gehen (X ist die Zufallsvariable, die angibt, wie oft die 1
> in n Würfen vorkommt):
>
> [mm]P(X=1)=\vektor{n \\ 1}p*(1-p)^{n-1}[/mm]
Das wäre die Wahrscheinlichkeit, dass die gesuchte Augenzahl an einer beliebigen Stelle auftritt.
Ist X die Zahl der benötigte Würfe, so ist aber die gesuchte Wahrscheinlichkeit P(X=n) diejenige für
* erste Zahl beliebig
* im 2. bis n-1-ten Wurf eine von der ersten verschiedene Augenzahl -> Wahrsch. [mm] (1-p)^{n-2}
[/mm]
* Augenzahl im n-ten Wurf gleich der im 1. Wurf -> Wahrsch. p
Damit gilt [mm] P(X=n)=p*(1-p)^{n-2}
[/mm]
>
> Die wahrscheinlichkeit, dass die 1 genau einmal vorkommt
> soll 1 sein, also [mm]P(X=1)=\vektor{n \\ 1}p*(1-p)^{n-1}=1[/mm]
> dies müsste ich dann nach n auflösen.
>
> Ist der Ansatz so in Ordnung?
>
> mfg
> piccolo
|
|
|
|
|
> > Hallo,
> >
> > es geht um folgende Aufgabe: Wie oft muss mit einem idealen
> > Würfel geworfen werden, bis wieder die Zahl des 1. Wurfes
> > auftritt?
> >
> > Als erstes ist nach der Verteilung gefragt. Hier wäre
> > meine Antwort, dass es sich um eine Binomialverteilung
> > handelt mit [mm]p=\frac{1}{6}[/mm] (für die Zahl des 1. Wurfes) und
> > [mm]q=\frac{5}{6}[/mm] (für alle anderen Zahlen).
>
> Die Binimialverteilung passt hier nicht, da dabei die Zahl
> n der Würfe vorgegeben ist. Bei der Aufgabenstellung
> hängt die Zahl der benötigten Würfe aber von den
> gewürfelten Augenzahle ab.
> Die passenede Verteilung dazu wäre die geometrische
> Verteilung (mit p=1/6).
>
> >
> > Nun würde ich einfach sagen, dass ja irgendweine Zahl im
> > 1. Wurf auftritt. O.B.d.A kann man hier die 1 nehmen.
>
> Der Ansatz ist ok, für die Wahrscheinlichkeit spielt es
> keine Rolle, welches die betrachtete erste Augenzahl ist.
>
> > Wie
> > berechne ich nun, wie oft ich würfeln muss, bis diese Zahl
> > wieder auftritt. Mein Ansatz würde über die Verteilung
> > gehen (X ist die Zufallsvariable, die angibt, wie oft die 1
> > in n Würfen vorkommt):
> >
> > [mm]P(X=1)=\vektor{n \\ 1}p*(1-p)^{n-1}[/mm]
>
> Das wäre die Wahrscheinlichkeit, dass die gesuchte
> Augenzahl an einer beliebigen Stelle auftritt.
> Ist X die Zahl der benötigte Würfe, so ist aber die
> gesuchte Wahrscheinlichkeit P(X=n) diejenige für
> * erste Zahl beliebig
> * im 2. bis n-1-ten Wurf eine von der ersten verschiedene
> Augenzahl -> Wahrsch. [mm](1-p)^{n-2}[/mm]
> * Augenzahl im n-ten Wurf gleich der im 1. Wurf ->
> Wahrsch. p
> Damit gilt [mm]P(X=n)=p*(1-p)^{n-2}[/mm]
>
Hey, danke für die schnelle Antwort, ist auch einleuchtend. Kann ich denn das n berechnen, indem ich sage: [mm] P(X=n)=p*(1-p)^{n-2}=1 [/mm] und dann nach n umstelle?
mfg piccolo
> >
> > Die wahrscheinlichkeit, dass die 1 genau einmal vorkommt
> > soll 1 sein, also [mm]P(X=1)=\vektor{n \\ 1}p*(1-p)^{n-1}=1[/mm]
> > dies müsste ich dann nach n auflösen.
> >
> > Ist der Ansatz so in Ordnung?
> >
> > mfg
> > piccolo
|
|
|
|
|
Hallo,
> Hey, danke für die schnelle Antwort, ist auch
> einleuchtend. Kann ich denn das n berechnen, indem ich
> sage: [mm]P(X=n)=p*(1-p)^{n-2}=1[/mm] und dann nach n umstelle?
nein, das geht so nicht. Vielleicht ist dir in der Aufgabe
Wie oft muss mit einem idealen Würfel geworfen werden, bis wieder die Zahl des 1. Wurfes auftritt?
etwas nicht aufgefallen, da die Fragestellung etwas unpräzise ist: es geht hier um einen Erwartungwert. Dafür benötigt man erst einmal eine Wahrscheinlichkeitsverteilung. Die lautet hier meiner Ansicht nach (da der 1. Wurf mitgezählt wird!):
[mm] P(X=n)=\left(\bruch{5}{6}\right)^{n-2}*\bruch{1}{6}
[/mm]
Um hier den Erwartungswert auszurechnen, arbeitet man am besten mit dem Grenzwert der geometrischen Reihe...
Gruß, Diophant
|
|
|
|