www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationWurzel umformen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differentiation" - Wurzel umformen
Wurzel umformen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzel umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Di 27.01.2009
Autor: Englein89

Hallo,

ich weiß nicht, ob das hier gut hinpasst, aber ich habe gerade ein Problem mit der Umformung von

[mm] \wurzel{\bruch{1}{2}}, [/mm] wieso ist dies [mm] \bruch{1}{\wurzel{2}}? [/mm]

Danke sehr!

        
Bezug
Wurzel umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Di 27.01.2009
Autor: fred97


> Hallo,
>  
> ich weiß nicht, ob das hier gut hinpasst, aber ich habe
> gerade ein Problem mit der Umformung von
>
> [mm]\wurzel{\bruch{1}{2}},[/mm] wieso ist dies
> [mm]\bruch{1}{\wurzel{2}}?[/mm]
>  
> Danke sehr!




Es ist ($ [mm] \wurzel{\bruch{1}{2}}$ )^2 [/mm] = 1/2  und ($ [mm] \bruch{1}{\wurzel{2}} $)^2 [/mm] = 1/2

Siehst Du das ?


Allgemein gilt:   [mm] \wurzel[]{a/b} [/mm] = [mm] \bruch{\wurzel[]{a}}{\wurzel[]{b}} [/mm]


Schau Dir dringend nochmal die Rechenregeln für Wurzeln und Potenzen an !!



FRED



FRED

Bezug
                
Bezug
Wurzel umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:25 Di 27.01.2009
Autor: Englein89

Das versteh ich, aber:

Wieso erhalte ich aus

[mm] x^2=Wurzel [/mm] aus 1/2:

x= +/- [mm] \bruch{\wurzel{2}}{2}? [/mm]

Bezug
                        
Bezug
Wurzel umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Di 27.01.2009
Autor: angela.h.b.


> Das versteh ich, aber:
>  
> Wieso erhalte ich aus
>  
> [mm]x^2=Wurzel[/mm] aus 1/2:

Hallo,

nimm doch den Formeleditor, Eingabehilfen unterhalb des Eingabefensters.

Soll das [mm] x^2=\wurzel{\bruch{1}{2}} [/mm] heißen?

==> x= [mm] \wurzel{\wurzel{\bruch{1}{2}} }=\wurzel[4]{\bruch{1}{2}} [/mm] oder x= [mm] -\wurzel{\wurzel{\bruch{1}{2}}}=-\wurzel[4]{\bruch{1}{2}} [/mm]

> x= +/- [mm]\bruch{\wurzel{2}}{2}?[/mm]  

Das hier ist was anderes:

[mm] x=\wurzel{\bruch{1}{2}} =\bruch{1}{\wurzel{2}}=\bruch{1}{\wurzel{2}}*\bruch{\wurzel{2}}{\wurzel{2}}=\bruch{\wurzel{2}}{2} [/mm]

Gruß v. Angela


Bezug
                                
Bezug
Wurzel umformen: 2 Variablen
Status: (Frage) beantwortet Status 
Datum: 22:14 Di 27.01.2009
Autor: Englein89

Hallo,

dann bin ich aber unsicher, wie man auf die Lösung kommt. Es handelt sich um eine Funktion mit 2 Variablen und die ersten Ableitungen nenne ich euch (die sind auch richtig). Ich soll Nullstellen finden, also stationäre Punkte.

Also ich habe:

[mm] 2x(1-2x^2+2y^2)=0 [/mm] sowie [mm] -2y(1+2x^2+2y^2)=0 [/mm]

Aus der ersten Gleichung kann ich schlussfolgern:

[mm] 2x(1-2x^2+2y^2)=0 [/mm] => 2x=0 => x=0 oder [mm] 1-2x^2+2y^2=0 [/mm]

Aus der 2. Gleichung:

[mm] -2y(1+2x^2+2y^2)=0 [/mm] => y=0 oder [mm] 1+2x^2+2y^2=0 [/mm]

Nun kann ich hier x=0 einsetzen:

[mm] 1+2x^2+2y^2=0 [/mm] mit x=0 => [mm] 1+2y^2=0, [/mm] da aber [mm] y^2 [/mm] nicht = [mm] -\bruch{1}{2} [/mm] werden kann, komme ich hier nicht weiter, also:

y=0 in [mm] 1-2x^2+2y^2=0 [/mm] einsetzen:

=> [mm] 1-2x^2=0 [/mm]
=> [mm] x^2= \bruch{1}{2} [/mm]
=> x= [mm] \pm \wurzel{\bruch{1}{2}} [/mm]

Wie komme ich nun auf die Nullstellen

[mm] X_1= -\bruch{\wurzel{2}}{2} [/mm] und [mm] x_2=\bruch{\wurzel{2}}{2} [/mm]

Bezug
                                        
Bezug
Wurzel umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:29 Di 27.01.2009
Autor: leduart

Hallo
ob du [mm] x=\pm \wurzel{1/2} [/mm] schreibst oder
[mm] x1=+\wurzel{1/2} [/mm]
[mm] x2=-\wurzel{1/2} [/mm]
da ist doch das erste nur ne Abkuerzung des zweiten.
und zu der Form [mm] \wurzel{2}/2 [/mm] kommst du, wie dir Angela ja vorgerechnet hat in dem du beide also dein x1 und dei x2 mit [mm] \wurzel{2} [/mm] erweiterst!
es gilt auch [mm] \wurzel{1/a}=1/\wurzel{a}=\wurzel{a}/a [/mm]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]