www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenWurzelfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionen" - Wurzelfunktion
Wurzelfunktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzelfunktion: in Betragsfunktion
Status: (Frage) beantwortet Status 
Datum: 22:40 So 13.12.2009
Autor: Zizu4u

Aufgabe
[mm] \wurzel{x^2 + 4x +4} [/mm] - x - 2  

diese Funktion hier  muss auch überprüft werden. In der Lösung wird aus der Wurzel das gemacht |x+2| . Ich verstehen zwar wie sie auf x+2 kommen, aber nicht wieso sie des zu nem betrag machen können. mein ansatz wäre der hier

[mm] \wurzel{x^2 + 4x +4} [/mm] - x - 2
[mm] =\wurzel{(x+2)^2} [/mm]  - x - 2
= x+2 - x-2
= 0

deshalb würde ich die wurzel so stehen lassen und es einfach so versuchen den links und rechtseitigen grenzwerz zu überprüfen. Aber da bekomme ich leider nicht die richtigen ergebnisse raus sondern genau falsch herum.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:45 So 13.12.2009
Autor: XPatrickX

Guten Abend.

Es ist nunmal [mm] \sqrt{x^2}\red{\not=}x, [/mm] sondern [mm] \sqrt{x^2}=|x|. [/mm] Denn beispielsweise hat die Gleichung [mm] x^2=9 [/mm] u.a. die Lösung $x=-3$.

Gruß Patrick

Bezug
                
Bezug
Wurzelfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:46 So 13.12.2009
Autor: Zizu4u

alles klar! verstanden thx ;)

Bezug
        
Bezug
Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 So 13.12.2009
Autor: Al-Chwarizmi

Die Gleichung  [mm] \sqrt{A^2}=A [/mm]  ist nur gültig, falls [mm] A\ge0. [/mm]

Die Gleichung  [mm] \sqrt{A^2}=|A| [/mm]  ist hingegen für alle [mm] A\in\IR [/mm] gültig.


LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]