www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-SonstigesWurzelfunktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Analysis-Sonstiges" - Wurzelfunktion
Wurzelfunktion < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzelfunktion: Extrempunkte
Status: (Frage) beantwortet Status 
Datum: 12:20 Mo 07.05.2012
Autor: diekleenemitmathelk

Aufgabe
Ich soll die Extrempunkte der Wurzelfunktion berechnen, [mm] f:(0,\infty) \to \IR x\mapsto \wurzel{x} [/mm]

Irgendwie komme ich nicht weiter habe die Monotonie schon gezeigt und weiß, dass die Funktion streng monoton wachsend ist. Daher kann sie ja keinen Hochpunkt besitzen oder? Für x= 0 gilt ja, dass f(x)=0 und f´(x)=0, kann man daher sagen, dass [mm] \wurzel{x} [/mm] dann an der Stelle x=0 einen Tiefpunkt hat?
Ich habe Probleme bei der formalen Darstellung. Danke schonmal für eure Hilfe

        
Bezug
Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:27 Mo 07.05.2012
Autor: Adamantin


> Ich soll die Extrempunkte der Wurzelfunktion berechnen,
> [mm]f:(0,\infty) \to \IR x\mapsto \wurzel{x}[/mm]
>  Irgendwie komme
> ich nicht weiter habe die Monotonie schon gezeigt und
> weiß, dass die Funktion streng monoton wachsend ist. Daher
> kann sie ja keinen Hochpunkt besitzen oder?

So ist es, geht auch klar aus dem Graphen hervor, da sie streng monoton wachsend ist, kann kein Hochpunkt angenommen werden, wenn wir nicht eine Einschränkung durch ein Intervall haben.

> Für x= 0 gilt
> ja, dass f(x)=0

Wie? Die Funktion ist überall 0? Oder meinst du f(0)=0? Daraus folgt aber nicht f'(0)=0.

> und f´(x)=0, kann man daher sagen, dass
> [mm]\wurzel{x}[/mm] dann an der Stelle x=0 einen Tiefpunkt hat?
>  Ich habe Probleme bei der formalen Darstellung. Danke
> schonmal für eure Hilfe

Noch was ganz anderes: wie willst du hier eine Nullstelle in der ersten Ableitung finden?

[mm] $f'(x)=\bruch{1}{2\sqrt{x}}$ [/mm]

Wäre x 0, ist der Ausdruck nicht definiert. Du findest also gar keinen Extrempunkt

Das wäre keine Aussage, da dafür die zweite Ableitung ungleich  0 sein müsste, was sie nicht ist. Du gewinnst aber durch keine weitere Ableitung eine Aussage, da hilft dir nur das Vorzeichenkriterium bzw. hier einfach die Tatsache, dass f(0) der niedrigste Wert ist, siehe deine Argumentation mit der Monotonie! f(0) ist kein Tiefpunkt nach Kurvendiskussion, da f'(0)=0 nur ein notwendiges Kriterium ist. Da f(0) aber einfach der kleinste Funktionswert ist, ist es ein globales Minimum. Das ergibt sich aber aus dem Def-Bereich bzw. der Monotonie.


Bezug
        
Bezug
Wurzelfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Mo 07.05.2012
Autor: fred97

Die Funktion [mm] f(x)=\wurzel{x} [/mm] ist in x=0 nicht differenzierbar, denn


       $ [mm] \bruch{f(t)-f(0)}{t-0}= \bruch{1}{\wurzel{t}} \to \infty$ [/mm]  für $t [mm] \to [/mm] 0+0$.


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]