www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisWurzelfunktion mit Limes
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - Wurzelfunktion mit Limes
Wurzelfunktion mit Limes < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzelfunktion mit Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 Do 14.06.2012
Autor: Parkan

Aufgabe
Finden Sie herraus ob die Folgende Reihe Konvergiert. Benutze die Limes-Version des Wurzelkriteriums

[mm]\summe_{i=1}^{\infty} \bruch{i}{2^i}[/mm]


Ich habe das jetzt so aufgeschrieben und bin nicht sicher ob es bis hierhin überhaupt richtig ist.
[mm]\limes_{i\rightarrow\infty} \wurzel[i]{|\bruch{i}{2/^i}|} = (\limes_{n\rightarrow\infty} \wurzel[i]{\bruch{i}{2}})^i[/mm]
Jetzt weis ich nicht so recht weiter.

Janina


        
Bezug
Wurzelfunktion mit Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Do 14.06.2012
Autor: reverend

Hallo Janina,

da stimmt doch was nicht...

> Finden Sie herraus ob die Folgende Reihe Konvergiert.
> Benutze die Limes-Version des Wurzelkriteriums
>  
> [mm]\summe_{i=1}^{\infty} \bruch{i}{2^i}[/mm]
>  
> Ich habe das jetzt so aufgeschrieben und bin nicht sicher
> ob es bis hierhin überhaupt richtig ist.

Bis hierhin kannst das auch nur Du wissen - hier steht ja nur die zu untersuchende Reihe.

>  [mm]\limes_{i\rightarrow\infty} \wurzel[i]{|\bruch{i}{2/^i}|} = (\limes_{n\rightarrow\infty} \wurzel[i]{\bruch{i}{2}})^i[/mm]

Der Schrägstrich im linken Nenner ist wohl nur ein Tippfehler, aber die Umformung rechts geht in die falsche Richtung (und hat bestimmt kein n unter dem Limes).

[mm] \lim_{i\to\infty}\wurzel[i]{\left|\bruch{i}{2^i}\right|}=\lim_{i\to\infty}\bruch{\wurzel[i]{i}}{2}=\bruch{1}{2}\lim_{i\to\infty}\wurzel[i]{i}=\cdots [/mm]

Die Betragsstriche darf man weglassen, weil i und [mm] 2^i [/mm] immer positiv sind.

Jetzt klarer?
Grüße
reverend


Bezug
                
Bezug
Wurzelfunktion mit Limes: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:21 Do 14.06.2012
Autor: Parkan


Ja vielen vielen dank.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]