www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Wurzelterm vereinfachen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Wurzelterm vereinfachen
Wurzelterm vereinfachen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wurzelterm vereinfachen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:17 Fr 14.12.2012
Autor: daHansVonNebenAn

Aufgabe
Vereinfachen sie den Wurzelterm so weit wie möglich!

[mm] \bruch{\wurzel{a^2-b^2}*\wurzel[3]{a^2}*\wurzel{a+b}*(\wurzel{a})^-1)/}{\wurzel{(a+b)^2*\wurzel{a-b}}*\bruch{1}{\wurzel{a}}*(\wurzel[3]{a})^2} [/mm]


Wie vereinfach man diesen Term schrittweise, ich habe nur das ergebnis vor mir liegen und kann keinerlei Lösungsweg mir selbst bilden..



        
Bezug
Wurzelterm vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Fr 14.12.2012
Autor: leduart

Hallo
[mm] a^2-b^2=(a+b)*(a-b) [/mm] mit der wurzel a+b zusammenfassen. [mm] a^{2/3}im [/mm] Z und N erkennen und kürzen
[mm] 1/\wurzel{a} [/mm] auch kürzen gegen was?
wenn du das hast weiter sehen!
am besten alles als [mm] a^{--} [/mm] schreiben, dann sieht man vieles besser.
Grus leduart

Bezug
                
Bezug
Wurzelterm vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Fr 14.12.2012
Autor: daHansVonNebenAn

danke schonmal, jetzt bin ich einen schritt weiter, hänge aber an der auflösung der "doppelwurzel", wie gehe ich hier vor?


Ich bin jetzt bei:

[mm] \bruch{\wurzel{(a+b)^2*(a-b)}}{\wurzel{(a+b)^2*\wurzel{a-b}}} [/mm]

Bezug
                        
Bezug
Wurzelterm vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Fr 14.12.2012
Autor: reverend

Hallo Hans,

das stimmt noch nicht.

> danke schonmal, jetzt bin ich einen schritt weiter, hänge
> aber an der auflösung der "doppelwurzel", wie gehe ich
> hier vor?
>  
> Ich bin jetzt bei:
>
> [mm]\bruch{\wurzel{(a+b)^2*(a-b)}}{\wurzel{(a+b)^2*\wurzel{a-b}}}[/mm]

An dieser Stelle müsstest Du bei [mm] \bruch{\wurzel{(a^2-b^2)(a+b)}}{\wurzel{(a+b)^2*\wurzel{a-b}}} [/mm] sein.

Es ist dabei nicht so geschickt, schon alles unter eine Wurzel zu ziehen, es sei denn, du gehst sogar noch einen Schritt weiter:

[mm] \wurzel{\bruch{(a^2-b^2)(a+b)}{(a+b)^2*\wurzel{a-b}}} [/mm]

Jetzt solltest Du im Zähler eine binomische Formel erkennen.
Schließlich bleibt unter der Wurzel noch etwas von der Form [mm] \bruch{x}{\wurzel{x}} [/mm] stehen, das Du also zu [mm] \wurzel{x} [/mm] kürzen kannst.

Grüße
reverend


Bezug
                                
Bezug
Wurzelterm vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:34 Di 18.12.2012
Autor: daHansVonNebenAn

Okay, ich habe das jetzt soweit versuch und habe folgene Ergebnisse:

[mm] \wurzel{(a^2-b^2)*(a+b)}/\wurzel{a^2+2ab+^2*\wurzel{a-b}} [/mm]
= [mm] \wurzel{\bruch{a^3-b^3}{a^2+2ab+b^2*\wurzel{a-b}}} [/mm]

Auseinanderziehen ergibt nun:
[mm] \wurzel{(a^2-b^2)*(a+b)}/\wurzel{a^2+2ab+^2*\wurzel{a-b}} [/mm]
= [mm] \wurzel{\bruch{1}}{a^2+2ab+b^2}*\wurzel{\bruch{a^4-b^4}{a-b}} [/mm]
letzeres ergibt dann [mm] a^3-b^3 [/mm] nach erweitern, so dass die Wurzel weg ist.

Wieder mit dem ersten Teil zusammengesetzt ergibt das dann:
[mm] \bruch{a^3-b^3}{\wurzel{a^2+b^2+2ab}} [/mm]
was wiederrum [mm] \bruch{a^4-b^4}{a^2+b^2+2ab} [/mm] ergibt.

Jetzt ziehe ich die 4. Wurzel und erhalte folgendes Endergebnis:
[mm] \wurzel[4]{\bruch{a-b}{a^-2+b^-2+(2ab)^-2}} [/mm]

Ist die Aufgabe jetzt gelöst?

Bezug
                                        
Bezug
Wurzelterm vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 Di 18.12.2012
Autor: fred97


> Okay, ich habe das jetzt soweit versuch und habe folgene
> Ergebnisse:
>  
> [mm]\wurzel{(a^2-b^2)*(a+b)}/\wurzel{a^2+2ab+^2*\wurzel{a-b}}[/mm]
>  = [mm]\wurzel{\bruch{a^3-b^3}{a^2+2ab+b^2*\wurzel{a-b}}}[/mm]

Da sind gleich 2 Fehler !

1. [mm] (a^2-b^2)(a+b)= a^3+a^b-b^2a-b^3 \ne a^3-b^3 [/mm]

2. [mm] (a+b)^2\wurzel{a-b}= (a^2+2ab+b^2)\wurzel{a-b} \ne a^2+2ab+b^2\wurzel{a-b} [/mm]

FRED

>  
> Auseinanderziehen ergibt nun:
>  [mm]\wurzel{(a^2-b^2)*(a+b)}/\wurzel{a^2+2ab+^2*\wurzel{a-b}}[/mm]
>  =
> [mm]\wurzel{\bruch{1}}{a^2+2ab+b^2}*\wurzel{\bruch{a^4-b^4}{a-b}}[/mm]
>  letzeres ergibt dann [mm]a^3-b^3[/mm] nach erweitern, so dass die
> Wurzel weg ist.
>  
> Wieder mit dem ersten Teil zusammengesetzt ergibt das
> dann:
>  [mm]\bruch{a^3-b^3}{\wurzel{a^2+b^2+2ab}}[/mm]
>  was wiederrum [mm]\bruch{a^4-b^4}{a^2+b^2+2ab}[/mm] ergibt.
>
> Jetzt ziehe ich die 4. Wurzel und erhalte folgendes
> Endergebnis:
>  [mm]\wurzel[4]{\bruch{a-b}{a^-2+b^-2+(2ab)^-2}}[/mm]
>  
> Ist die Aufgabe jetzt gelöst?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]