www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)ZGWS für Binomialverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik (Anwendungen)" - ZGWS für Binomialverteilung
ZGWS für Binomialverteilung < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ZGWS für Binomialverteilung: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:58 Do 25.11.2010
Autor: Grassi

Aufgabe
Student A legt den täglichen Weg zur Uni mit den nicht aufeinander abgestimmten Verkehrsmitteln Bus und Bahn zurück. Zu 80% wird ein direkter Anschluss Bus-Bahn gerade noch erreicht, zu 20% muss er 30 Minuten auf den nächsten Zug warten.

(a) Die Zufallsgröße Xi sei wie folgt definiert: Xi = 1 falls bei einer beliebigen herausgegriffenen Fahrt i der direkte Anschluss verpasst wird, Xi = 0 sonst. Geben Sie die Verteilung, den Erwartungswert und die Varianz von Xi an.

(b) Geben Sie die mit dem Zentralen Grenzwertsatz angenäherte Verteilungsfunktion der in einem Jahr (175 Fahrten) bei diesen Fahrten am Bahnhof verbrachten Zeit an.

(c) Der Student liest in dieser Zeit den neuen Band von Harry Potter und veranschlagt dafür 15 Stunden. Mit welcher Wahrscheinlichkeit hat er ihn am Ende des Jahres durchgelesen?

a) B [mm] \sim [/mm] (1; 0,2)
E(x) = np = 0,2
Var(X) = np(1-p) = 0,16

Soweit verstehe ich das ja noch!
Jedoch bei b) weiß ich gar nicht wie ich das lösen soll.
Das Ergebnisse kenne ich:
b) Y [mm] \sim [/mm] N(1050, 25200)

Mit dem ZGWS ist das doch so gemeint, das es am Ende eine Normalverteilung sein soll, oder?


c) dafür brauche ich ja den Erwartungswert und die Varianz aus b)

Vielen Dank im Voraus.

        
Bezug
ZGWS für Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Do 25.11.2010
Autor: Walde

Hi Grassi,

> Student A legt den täglichen Weg zur Uni mit den nicht
> aufeinander abgestimmten Verkehrsmitteln Bus und Bahn
> zurück. Zu 80% wird ein direkter Anschluss Bus-Bahn gerade
> noch erreicht, zu 20% muss er 30 Minuten auf den nächsten
> Zug warten.
>  
> (a) Die Zufallsgröße Xi sei wie folgt definiert: Xi = 1
> falls bei einer beliebigen herausgegriffenen Fahrt i der
> direkte Anschluss verpasst wird, Xi = 0 sonst. Geben Sie
> die Verteilung, den Erwartungswert und die Varianz von Xi
> an.
>  
> (b) Geben Sie die mit dem Zentralen Grenzwertsatz
> angenäherte Verteilungsfunktion der in einem Jahr (175
> Fahrten) bei diesen Fahrten am Bahnhof verbrachten Zeit
> an.
>  
> (c) Der Student liest in dieser Zeit den neuen Band von
> Harry Potter und veranschlagt dafür 15 Stunden. Mit
> welcher Wahrscheinlichkeit hat er ihn am Ende des Jahres
> durchgelesen?
>  a) B [mm]\sim[/mm] (1; 0,2)
>  E(x) = np = 0,2
>  Var(X) = np(1-p) = 0,16
>  
> Soweit verstehe ich das ja noch!
>  Jedoch bei b) weiß ich gar nicht wie ich das lösen
> soll.
>  Das Ergebnisse kenne ich:
>  b) Y [mm]\sim[/mm] N(1050, 25200)
>  
> Mit dem ZGWS ist das doch so gemeint, das es am Ende eine
> Normalverteilung sein soll, oder?

Ja(,nährungsweise halt). Zunächst mal definiere eine neue ZV für die Anzahl der gewarteten Minuten bei Fahrt i:
[mm] X_i':=30*X_i [/mm]
Und nun für die Anzahl der gewarteten Minuten im Jahr (175 Fahrten):
[mm] Y:=\summe_{i=1}^{175}X_i' [/mm]

Da die [mm] X_i [/mm] iid sind und mit den Rechenregeln für []Erwartungswert und []Varianz  von Summen von ZVn ergibt sich mit dem ZGWS, dass nährungsweise [mm] Y\sim N(30*175*0,2;30^2*175*0,16)=N(1050;25200) [/mm]

>  
>
> c) dafür brauche ich ja den Erwartungswert und die Varianz
> aus b)
>  
> Vielen Dank im Voraus.

LG walde


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]