www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieZV, Erwartungswert, Verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - ZV, Erwartungswert, Verteilung
ZV, Erwartungswert, Verteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ZV, Erwartungswert, Verteilung: drei Folgerungen
Status: (Frage) beantwortet Status 
Datum: 12:40 Di 10.01.2012
Autor: Infostudent

Hallo,

geht um folgende drei Kleinigkeiten, die mir noch nicht so ganz klar sind:

1) Sei X eine ZV, dann folgt aus [mm] E(X^2) [/mm] < [mm] \infty [/mm] immer E(X) < [mm] \infty [/mm] ? Ich habe ja dann nur [mm] X^2(\omega) [/mm] anstatt [mm] X(\omega) [/mm] im Integral stehen und letzteres kann nicht unendlich werden ohne dass dies für ersteres auch gilt.

2) Sei X reelle ZV >= 0. Warum gilt dann: [mm] \integral_{0}^{\infty}{\chi_{(t,\infty)}(X) dt} [/mm] = X?

3) Ich habe hier eine Aufgabe bei der nach den beiden Zusammenhängen zwischen einer reellen ZV mit Dichte und ihrer Verteilungsfunktion gefragt ist.
Ist damit die Bijektion gemeint? Also dass man für jedes W-Maß auf [mm] \mathcal{B} [/mm] genau eine VF findet und umgekehrt oder zählt dieser Zusammenhang nur einfach und es ist noch etwas anderes gemeint?

        
Bezug
ZV, Erwartungswert, Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 So 15.01.2012
Autor: felixf

Moin!

> geht um folgende drei Kleinigkeiten, die mir noch nicht so
> ganz klar sind:
>  
> 1) Sei X eine ZV, dann folgt aus [mm]E(X^2)[/mm] < [mm]\infty[/mm] immer E(X)
> < [mm]\infty[/mm] ? Ich habe ja dann nur [mm]X^2(\omega)[/mm] anstatt
> [mm]X(\omega)[/mm] im Integral stehen und letzteres kann nicht
> unendlich werden ohne dass dies für ersteres auch gilt.

Aus [mm] $E(|X|^2) [/mm] < [mm] \infty$ [/mm] folgt $E(|X|) < [mm] \infty$ [/mm] (Ungleichung von Ljapunoff).

Und aus $E(|X|) < [mm] \infty$ [/mm] folgt $E(X) < [mm] \infty$, [/mm] zumindest falls $X$ selber messbar ist (was du aber wohl implizit annimmst wenn du sagst, dass $X$ eine ZV ist).

> 2) Sei X reelle ZV >= 0. Warum gilt dann:
> [mm]\integral_{0}^{\infty}{\chi_{(t,\infty)}(X) dt}[/mm] = X?

Hier brauchst du nur, dass $X$ eine reelle Zahl [mm] $\ge [/mm] 0$ ist, da das Integral nur vom festen Wert [mm] $X(\omega)$ [/mm] abhaengt, und auf der rechten Seite ebenfalls [mm] $X(\omega)$ [/mm] steht.

Ich nehme an, bei [mm] $\chi_{(t, \infty)}(x)$ [/mm] handelt es sich um die Indikatorfunktion, die fuer $x [mm] \in [/mm] (t, [mm] \infty)$ [/mm] den Wert 1 und sonst den Wert 0 annimmt, oder?

Der Integrand [mm] $\chi_{(t, \infty)}(X)$ [/mm] ist 0 falls $X [mm] \le [/mm] t$ ist, und 1 sonst. Damit ist [mm] $\int_0^\infty \chi_{(t, \infty)}(X) \; [/mm] dt = [mm] \int_0^X \chi_{(t, \infty)}(X) \; [/mm] dt + [mm] \int_X^\infty \chi_{(t, \infty)}(X) \; [/mm] dt = [mm] \int_0^X [/mm] 1 [mm] \; [/mm] dt + [mm] \int_X^\infty [/mm] 0 [mm] \; [/mm] dt = (X - 0) [mm] \cdot [/mm] 1 + 0 = X$.

> 3) Ich habe hier eine Aufgabe bei der nach den beiden
> Zusammenhängen zwischen einer reellen ZV mit Dichte und
> ihrer Verteilungsfunktion gefragt ist.
>  Ist damit die Bijektion gemeint?

Nein, es ist einfach nur der Zusammenhang $F'(t) = f(t)$ und $F(t) = [mm] \int_{-\infty}^t [/mm] f(s) [mm] \; [/mm] ds$ gemeint.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]