www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperZ_2[i] Integritätsbereich?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - Z_2[i] Integritätsbereich?
Z_2[i] Integritätsbereich? < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Z_2[i] Integritätsbereich?: Erklärung,Überprüfen,
Status: (Frage) beantwortet Status 
Datum: 14:56 So 30.01.2011
Autor: Balendilin

Ich möchte mir überlegen, ob [mm] \IZ_2[i]=\{a+bi|a,b\in\IZ_2\} [/mm] ein Integritätsbereich ist. Ich weiß, dass es folgende Elemente enthält:

0,1,i,i+1

Und nun muss ich ja bloß noch überlegen, ob es Nullteiler besitzt:

[mm] 1\cdot1=1 [/mm]
[mm] i\cdot [/mm] i=1
(i+1)(i+1)=0

also habe ich einen Nullteiler gefunden. Allerdings habe ich folgendes Problem:

[mm] i\cdot(1+i)=1+i [/mm]

Und das finde ich irgendwie komisch. Denn das würde ja bedeuten, dass 1) i ein neutrales Element wäre, also i=1, oder 2) dass 1+i=0 ist. Im zweiten Fall bekomme ich auch i=1.
Damit hätte ich also bloß noch diese zwei Elemente: 0,1. Damit wäre mein [mm] \IZ_2[i] [/mm] isomorph zu [mm] \IZ_2 [/mm] und damit sogar ein Körper.

Habe ich irgendwo einen Fehler gemacht?

        
Bezug
Z_2[i] Integritätsbereich?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 So 30.01.2011
Autor: schachuzipus

Hallo Balendilin,


Setze die Formeln zwischen Dollarzeichen oder die mm /mm tags, aber nicht diese komischen i /i tags

> Ich möchte mir überlegen, ob [mm]\IZ_2[i]=\{a+bi|a,b\in\IZ_2\}[/mm] [/i][/mm]
> [mm][i]ein Integritätsbereich ist. Ich weiß, dass es folgende [/i][/mm]
> [mm][i]Elemente enthält:[/i][/mm]
> [mm][i] [/i][/mm]
> [mm][i]0,1,i,i+1[/i][/mm]
> [mm][i] [/i][/mm] [ok]
> [mm][i]Und nun muss ich ja bloß noch überlegen, ob es Nullteiler [/i][/mm]
> [mm][i]besitzt:[/i][/mm]
> [mm][i] [/i][/mm]
> [mm][i]1\cdot1=1[/mm][/i][/mm]
> [mm][i] i\cdot[/mm] i=1[/i][/mm] [ok]





> [mm][i] (i+1)(i+1)=0[/i][/mm] [ok]





> [mm][i] [/i][/mm]
> [mm][i]also habe ich einen Nullteiler gefunden. Allerdings habe [/i][/mm]
> [mm][i]ich folgendes Problem:[/i][/mm]
> [mm][i] [/i][/mm]
> [mm][i]i\cdot(1+i)=1+i[/mm][/i][/mm]
> [mm][i] [/i][/mm]
> [mm][i]Und das finde ich irgendwie komisch. Denn das würde ja [/i][/mm]
> [mm][i]bedeuten, dass 1) i ein neutrales Element wäre, Wieso das? Es müsste ja dann für alle Elemente $a\in\IZ_2[i]$ gelten $i\cdot{}a=a$ Aber mit $a=1$ ist $i\cdot{}a=i$ > also i=1, [/i][/mm]

Und das stimmt ja nicht!

> [mm][i]oder 2) dass 1+i=0 ist. Im zweiten Fall bekomme ich auch [/i][/mm]
> [mm][i]i=1. [/i][/mm]
> [mm][i]Damit hätte ich also bloß noch diese zwei Elemente: 0,1. [/i][/mm]
> [mm][i]Damit wäre mein \IZ_2[i][/mm] isomorph zu [mm]\IZ_2[/mm] und damit sogar [/i][/mm][/i][/mm]
> [mm][i][i]ein Körper.[/i][/mm][/i][/mm]
> [mm][i][i] [/i][/mm][/i][/mm]
> [mm][i][i]Habe ich irgendwo einen Fehler gemacht? [/i][/mm][/i][/mm]



Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]