www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-AnalysisZahl e und Logarithmus
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - Zahl e und Logarithmus
Zahl e und Logarithmus < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahl e und Logarithmus: Frage
Status: (Frage) beantwortet Status 
Datum: 23:57 Mo 22.11.2004
Autor: Disap

F(x)= 15 * [mm] e^{- ln2*\bruch{x}{5730} } [/mm]

Wie lässt man hier die Zahl e verschiwnden?

f(x) = 15 [mm] *0,5^{\bruch{x}{5730} } [/mm]

hebt sich also [mm] e^{-ln} [/mm] auf, also wird zu 1 oder wie ist das?

        
Bezug
Zahl e und Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 00:20 Di 23.11.2004
Autor: adonis1981

Hi!

Also zu Deiner Aufgabe:

Mit Hilfe von ein paar Potenz- und Logarithmusgesetzen kann man das e wegbekommen.

Man sollte wissen: [mm] e^{ln a}=a [/mm]

Nun kann man mit der Aufgabe folg. machen:

f(x)=15 [mm] e^{-ln (2)*\bruch{x}{5730}}=15 (e^{ln 2})^{\bruch{-x}{5730}}=15*2^{\bruch{-x}{5730}}. [/mm]

Zuerst habe ich also ein Potenzgesetz angewendet und dann die Klammer ausgerechnet.
So hab ich dann die 2 wegbekommen.

Hoffe, Du kannst alles nachvollziehen.
MfG
Mario

Bezug
                
Bezug
Zahl e und Logarithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:58 Di 23.11.2004
Autor: Sigrid


> Hi!
>  
> Also zu Deiner Aufgabe:
>  
> Mit Hilfe von ein paar Potenz- und Logarithmusgesetzen kann
> man das e wegbekommen.
>  
> Man sollte wissen: [mm]e^{ln a}=a [/mm]
>  
> Nun kann man mit der Aufgabe folg. machen:
>  
> f(x)=15 [mm]e^{-ln (2)*\bruch{x}{5730}}=15 (e^{ln 2})^{\bruch{-x}{5730}}=15*2^{\bruch{-x}{5730}}. [/mm]

Ich würde hier npch einen Schritt weiter gehen, damit du auf Disaps Form kommst

[mm] 15*2^{\bruch{-x}{5730}} = 15*(2^{-1})^{\bruch{x}{5730}} = 15*0,5^{\bruch{x}{5730}} [/mm].



>  
>
> Zuerst habe ich also ein Potenzgesetz angewendet und dann
> die Klammer ausgerechnet.
>  So hab ich dann die 2 wegbekommen.
>  
> Hoffe, Du kannst alles nachvollziehen.
>  MfG
>  Mario
>  

Gruß Sigrid

Bezug
        
Bezug
Zahl e und Logarithmus: Hinweis auf MatheBank
Status: (Antwort) fertig Status 
Datum: 08:24 Di 23.11.2004
Autor: informix

Hallo Disap,

[guckstduhier] MBin unserer MatheBank
Hier findest du die einschlägigen Gesetze zu den Logarithmen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]