www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieZahlentheoret. Problem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - Zahlentheoret. Problem
Zahlentheoret. Problem < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlentheoret. Problem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Mo 19.03.2007
Autor: frustriert

Aufgabe
Bestimmen Sie eine natürliche Zahl a und unendlich viele Moduln m derart, dass die Kongruenz [mm] x^{3} \equiv a\ mod\ m [/mm] jeweils genau 9 verschiedene Lösungen x mod m hat. Geben Sie ein Beispiel für m.

Hallo erstmal!

Ich weiß leider nicht so genau, ob ich mit meinen Ausführungen zu obiger Aufgabe bis jetzt auf dem richtigen Weg bin.
Bis jetzt habe ich:
a muss 3. Potenzrest von [mm] m=(m_{1}*m_{2}) [/mm] sein und ggt [mm] (m_{1}-1, [/mm] 3) und [mm] ggt(m_{2}-1, [/mm] 3) muss gleich 3 sein. Somit hätte ich nach dem chin. Restsatz insgesamt [mm] 3^{2} [/mm] = 9 Lösungen.
[mm] \Rightarrow m_{1,2} [/mm] = k*3 + 1 für k [mm] \ge [/mm] 2 mit [mm] m_{1,2} [/mm] prim

Ist das richtig und wie komme ich jetzt weiter?

Danke schonmal für eure Hilfe,

Gruß, Maren

        
Bezug
Zahlentheoret. Problem: Antwort
Status: (Antwort) fertig Status 
Datum: 10:53 Fr 23.03.2007
Autor: wauwau

Genial wie du das gemacht hast - Stimmt genau:

Da jede arithmetische Folge ak+d mit ggt(a,d)=1 unendl. viele Primzahlen enthält (Satz von Dirichlet), kanst du unendlich viele solche m1 und m2 und somit m konstruieren ein Beispiel ist z.B.
m1=7, m2=13, daher m=91 und z.b.:  a=1

Die 9 Lösungen sind dann
1,9,16,22,29,53,74,79,81

mit a=8 wären die 9 Lösungen
2
15
18
32
44
57
58
67
71

mit a = 27
3
27
40
48
55
61
66
68
87

mit a=64
4
23
25
30
36
43
51
64
88




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]