www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesZahlentheorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Sonstiges" - Zahlentheorie
Zahlentheorie < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlentheorie: "Hilfe"
Status: (Frage) beantwortet Status 
Datum: 11:27 Sa 23.04.2005
Autor: Ursus

Hi Leute!

Ich hab mal wieder ein Problem bei dieser Zahlentheorie Aufgabe:
Es seien a,b  [mm] \in \IN [/mm] mit (a,b)=1. Zeige: Jede natürliche Zahl n > ab kann dargestellt werden in der Form ax + by = n mit x,y [mm] \in \IN. [/mm]

Also mein Lösungsansatz:
mit dem Euklidischen Algorithmus könnte man ja folgendes berechnen:
    ax + by = 1 wobei x [mm] \in \IZ [/mm] und y [mm] \in \IN [/mm] (o.B.d.A.)
Dann addiere ab =>
    ax + by + ab = 1 + ab         n:=1+ab
    a(x+b) + by = n
Die Lösungen dieser Gleichung sollen ja nur aus  [mm] \IN [/mm] sein. Also muss ich irgendwie zeigen, dass jetzt (x+b) [mm] \in \IN. [/mm]
Aber alle meiner Versuche scheiterten dies zu zeigen.
Kann mir bitte jemand einen Tipp geben,wie man das zeigen kann??

Ich habe diese Frage auf keinen anderen Seiten, Foren gepostet.

Vielen, vielen Dank im Voraus!!
mfg URSUS  


        
Bezug
Zahlentheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Sa 23.04.2005
Autor: Stefan

Hallo Ursus!

Erst einmal ist dein Beweis falsch, da du die Behauptung ja für alle $n>ab$ zeigen sollst und daher nicht einfach $n:=ab+1$ setzen darfst.

Die Grundidee anfangs war aber richtig:

Es gibt [mm] $\tilde{x},\tilde{y} \in \IZ$ [/mm] mit

[mm] $a\tilde{x}+ [/mm] b [mm] \tilde{y} [/mm] =1$.

Die Multiplikation mit $n>ab$ auf beiden Seiten liefert:

[mm] $a\tilde{x}n [/mm] + b [mm] \tilde{y}n [/mm] = n$.

Sind nun bereits [mm] $\tilde{x}>0$ [/mm] und [mm] $\tilde{y}>0$, [/mm] so ist nichts zu zeigen, denn dann setzen wir [mm] $x:=\tilde{x}n \in \IN$ [/mm] und [mm] $y:=\tilde{y}n \in \IN$. [/mm]

Der Fall [mm] $\tilde{x}<0$ [/mm] und [mm] $\tilde{y}<0$ [/mm] kann nicht auftreten, denn dann wäre

[mm] $a\tilde{x}n [/mm] + [mm] b\tilde{y}n [/mm] < 0 <n$.

Es genügt also, oBdA den Fall [mm] $\tilde{x}>0$ [/mm] und [mm] $\tilde{y}<0$ [/mm] zu betrachten.

Man beachte, dass aus

[mm] $a\tilde{x}n [/mm] + b [mm] \tilde{y}n [/mm] = n$

für alle $k [mm] \in \IZ$ [/mm] folgt:

[mm] $a(\tilde{x}n [/mm] - kb) + [mm] b(\tilde{y}n [/mm] + ka) = n$.

Setzen wir also für [mm] $k\in\IZ$ [/mm]

[mm] $x_k [/mm] := [mm] \tilde{x}n [/mm] - kb$

und

[mm] $y_k:=\tilde{y}n [/mm] + ka$,

so genügt es zu zeigen:

Es gibt ein [mm] $k\in \IN$ [/mm] mit

[mm] $x_k>0$ [/mm] und [mm] $y_k>0$. [/mm]

So, und jetzt kommt unsere Voraussetzung $n>ab$ ins Spiel.

Wir haben nämlich:

[mm] $a\tilde{x}n [/mm] + b [mm] \tilde{y}n [/mm] = n >ab$,

also:

[mm] $\underbrace{\frac{\tilde{x}n}{b}}_{>0} [/mm] + [mm] \underbrace{\frac{\tilde{y}n}{a}}_{<0} [/mm] = [mm] \frac{\tilde{x}n}{b} [/mm] - [mm] \underbrace{\frac{-\tilde{y}n}{a}}_{>0}>1$. [/mm]

Dies bedeutet aber:

Es gibt ein $k [mm] \in \IN$ [/mm] mit

[mm] $\frac{-\tilde{y}n}{a} [/mm] < k < [mm] \frac{\tilde{x}n}{b}$. [/mm]

Und jetzt meine Frage an dich, damit du auch selber noch aktiv dabei bleibst: Warum sind wir jetzt fertig und haben alles gezeigt? :-)

Liebe Grüße
Stefan



Bezug
                
Bezug
Zahlentheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:48 So 24.04.2005
Autor: Ursus

Hallo Stefan!

Vielen Dank erstmals für deine Hilfe.
Ich hab das bei meinem Beweis anfangs so gemeint und zwar hätte ich für n:=1+ab gezeigt, und hätte dann ax+by=1 mit 2,3 oder 4,... multipliziert und somit wäre ich beim anschließenden addieren mit ab auf alle n> ab gekommen. Aber das habe ich leider beim Artikel vergessen, na egal deine Lösung ist sowieso viel eleganter!!
Dein Beweis ist fertig, da wir ein k [mm] \in \IN [/mm] gefunden haben, sodass die Gleichung ax+by=n mit x,y [mm] \in \IN [/mm]  sind. Glaube ich halt?

Thx! LG URSUS

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]