www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieZahlkörper und Norm
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Zahlkörper und Norm
Zahlkörper und Norm < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlkörper und Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 Mi 06.01.2010
Autor: algieba

Aufgabe
Zeigen oder widerlegen sie:
Sei [mm]K/\IQ[/mm] ein Zahlkörper. Für gegebenes [mm]n \in \IZ[/mm] gibt es nur endlich viele Elemente mit Norm n.

Ich sitze schon ewig an dieser Aufgabe und komme auf keinen Ansatz. Ich vermute dass es nicht stimmt aber ich kann es leider nicht begründen.

Vielen Dank





        
Bezug
Zahlkörper und Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 16:25 Mi 06.01.2010
Autor: felixf

Hallo!

> Zeigen oder widerlegen sie:
> Sei [mm]K/\IQ[/mm] ein Zahlkörper. Für gegebenes [mm]n \in \IZ[/mm] gibt es
> nur endlich viele Elemente mit Norm n.
>
>  Ich sitze schon ewig an dieser Aufgabe und komme auf
> keinen Ansatz. Ich vermute dass es nicht stimmt aber ich
> kann es leider nicht begründen.

Hast du es mal ausprobiert?

Wieviele Elemente gibt es z.B. in [mm] $\IQ(\sqrt{2})$ [/mm] der Norm 1?

LG Felix


Bezug
                
Bezug
Zahlkörper und Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:49 Mi 06.01.2010
Autor: algieba

Ich habe jetzt mal einen Ansatz:
Sei [mm] x=a+b\wurzel{2}[/mm] dann ist die Multiplikationsmatrix

[mm] m_{x} = \pmat{ a & 2b \\ b & a } [/mm]

Die Norm von x ist dann [mm]det(m_{x}) = a^2-2b^2[/mm]
Diese Norm soll 1 sein also: [mm]1 = a^2-2b^2[/mm]
Diese Gleichung hat unendlich viele Lösungen für a und b, also gibt es unendlich viele Elemente mit Norm 1. Damit ist die Aussage widerlegt.
qed

Stimmt das?
Danke für deine Hilfe!

Bezug
                        
Bezug
Zahlkörper und Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Mi 06.01.2010
Autor: felixf

Hallo!

> Ich habe jetzt mal einen Ansatz:
>  Sei [mm]x=a+b\wurzel{2}[/mm] dann ist die Multiplikationsmatrix
>
> [mm]m_{x} = \pmat{ a & 2b \\ b & a }[/mm]
>  
> Die Norm von x ist dann [mm]det(m_{x}) = a^2-2b^2[/mm]

[ok]

>  Diese Norm
> soll 1 sein also: [mm]1 = a^2-2b^2[/mm]

Genau.

>  Diese Gleichung hat
> unendlich viele Lösungen für a und b, also gibt es
> unendlich viele Elemente mit Norm 1.

Das stimmt, aber ganz trivial ist es nicht. Warum gibt es unendlich viele Loesungen in [mm] $\IQ$? [/mm]

> Damit ist die Aussage
> widerlegt.

Ja.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]