www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikZahlungsreihe u. Kapitalwert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Finanzmathematik" - Zahlungsreihe u. Kapitalwert
Zahlungsreihe u. Kapitalwert < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zahlungsreihe u. Kapitalwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Di 28.10.2008
Autor: UrmeldieMurmel

Aufgabe
Zwei Zahlungsreihen A und B sind gegeben:

A: 1000€ ( 1.1.2007), 2000€ (1.1.2009), 5000€ (1.1.2013)
B: 1500€ ( 1.1.2008), 1000€ (1.1.2010), 3000€ (1.1.2011), 2000€ (1.1.2012)

a) Welche Zahlungsreihe ergibt höheren Kapitalwert bei i=10% und i=20% ?
b) Bei welchem Zinssatz zwischen 10-20% sind beide Reihe äquivalent ?

Meine Frage lautet wie folgt: Wie muss ich an diese Aufgabe rangehen ?
Ich habe Formeln für vorschüssige- und nachschüssige Zinsen, Zinseszins usw., nur muss ich ehrlich gesagt gestehen, dass ich nicht auf den richtigen Ansatz komme.

Ich habe versucht, die Einzahlung entsprechend der Zeiträume zu verzinsen und dann die einzelnen Kapitalwert addiert, aber komme nicht auf die Lösung.

Danke für die Hilfe !

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zahlungsreihe u. Kapitalwert: Antwort
Status: (Antwort) fertig Status 
Datum: 08:43 Mi 29.10.2008
Autor: Josef

Hallo,

> Zwei Zahlungsreihen A und B sind gegeben:
>  
> A: 1000€ ( 1.1.2007), 2000€ (1.1.2009), 5000€ (1.1.2013)
>  B: 1500€ ( 1.1.2008), 1000€ (1.1.2010), 3000€ (1.1.2011),
> 2000€ (1.1.2012)
>  
> a) Welche Zahlungsreihe ergibt höheren Kapitalwert bei
> i=10% und i=20% ?
>  b) Bei welchem Zinssatz zwischen 10-20% sind beide Reihe
> äquivalent ?
>  Meine Frage lautet wie folgt: Wie muss ich an diese
> Aufgabe rangehen ?
>  Ich habe Formeln für vorschüssige- und nachschüssige
> Zinsen, Zinseszins usw., nur muss ich ehrlich gesagt
> gestehen, dass ich nicht auf den richtigen Ansatz komme.
>  
> Ich habe versucht, die Einzahlung entsprechend der
> Zeiträume zu verzinsen und dann die einzelnen Kapitalwert
> addiert, aber komme nicht auf die Lösung.
>  

Wie lautet denn die Lösung?
Deine Vorgehensweise ist nicht falsch.

Wähle einen Zeitpunkt, z.B. 1.1.2007 und zins die einzelnen Zahlungen ab auf diesen Zeitpunkt:

A: 1.000 + [mm] \bruch{2.000}{1,1^2} [/mm] + [mm] \bruch{5.000}{1,1^6} [/mm] =

B: [mm] \bruch{1.500}{1,1^1} [/mm] + ...



Viele Grüße
Josef

Bezug
                
Bezug
Zahlungsreihe u. Kapitalwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:02 Fr 31.10.2008
Autor: UrmeldieMurmel

Danke für die Hilfe, hatte die Kapitalwertsformel auch gefunden.

Bei der äquivalenz, reicht es da nicht, wenn ich einen beliebigen Wert von beiden Zahlenreihe nehme, die gleichsetze und dann nach i umstelle ?

Bezug
                        
Bezug
Zahlungsreihe u. Kapitalwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:28 Fr 31.10.2008
Autor: Josef

Hallo,

>  
> Bei der äquivalenz, reicht es da nicht, wenn ich einen
> beliebigen Wert von beiden Zahlenreihe nehme, die
> gleichsetze und dann nach i umstelle ?


Nein!
Auf keinen Fall eignen sich zum Vergleich von Zahlungsströmen die nominalen Summen der Beträge ohne Beachtung der Zeitpunkte der Zahlung!
Frühere Zahlungen eines Betrags haben immer einen höheren  Barwert als spätere Zahlungen desgleichen Betrags. Dieses resultiert aus der Tatsache, dass man die früher erhaltenen Beträge anlegen könnte und diese so Zinsen tragen.

Du musst die beiden Zahlungsströme A und B gleichsetzen und dann nach q bzw. i auflösen.


Viele Grüße
Josef

Bezug
                                
Bezug
Zahlungsreihe u. Kapitalwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:00 Fr 31.10.2008
Autor: UrmeldieMurmel

Gut, dann danke ich dir erstmal. Werde es am Wochenende fertigstellen und mich bei Problemen nochmal melden.

Bezug
                                
Bezug
Zahlungsreihe u. Kapitalwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 Sa 01.11.2008
Autor: UrmeldieMurmel

Gut, danke für den Hinweis. Habe den Lösungsweg jetzt, nur ist das ein riesen Polynom.

Vielen Dank nochmal !

Bezug
                                        
Bezug
Zahlungsreihe u. Kapitalwert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 Sa 01.11.2008
Autor: Josef

Hallo,

> Gut, danke für den Hinweis. Habe den Lösungsweg jetzt, nur
> ist das ein riesen Polynom.
>


Zur Lösung hilft ein Näherungsverfahren (Regula falsi).  Oder ein Rechner.
Lösung muss zwischen q = 1,1 - 1,2 liegen. Startwert wäre z.B. q = 1,15


Viele Grüße
Josef

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]