www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitZeige: f:R --> R  ist "TIGSTE"
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stetigkeit" - Zeige: f:R --> R ist "TIGSTE"
Zeige: f:R --> R ist "TIGSTE" < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeige: f:R --> R ist "TIGSTE": Aufagbe + Tipp + Korrektur
Status: (Frage) beantwortet Status 
Datum: 19:42 So 06.01.2008
Autor: Ich_bin_doof

Aufgabe
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:

http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=94974

Aufgabe:

Eine Funktion [mm] f:\IR [/mm] -> [mm] \IR [/mm] heiße tigste im Punkt [mm] x_0, [/mm] wenn

[mm] \forall\ \delta [/mm] >0 : [mm] \exists\ \epsilon [/mm] >0 : [mm] \forall\ [/mm] x [mm] \in \IR [/mm] : [mm] \left|x-x_0 \right| [/mm] < [mm] \delta \Rightarrow \left|f(x)-f(x_0) \right| [/mm] < [mm] \epsilon [/mm]

gilt. Zeigen Sie: Ist f in einem Punkt tigste, so ist f in allen Punkten tigste.


Meine Überlegung:

Der Unterschied zwischen der oben genannter tigster Funktion und der Definition der Stetigkeit ist nur der "Quantortausch"

Um "Tigste" zu beweisen, würde ich zuerst ein beliebiges [mm] \delta [/mm] >0 vorgeben (Beim Beweis der Stetigkeit gibt man dagegen ein [mm] \epsilon [/mm] >0 vor)

Meine Annahme (Voraussetzung) ist [mm] \left|x-x_0 \right| [/mm] < [mm] \delta [/mm] und ich muss [mm] \left|f(x)-f(x_0) \right| [/mm] < [mm] \epsilon [/mm] zeigen.

Da [mm] \delta [/mm] >0 in diesem Fall beliebig ist, kann ich auch x beliebig wählen, also

[mm] \left|x-x_1 \right| [/mm] < [mm] \delta [/mm]  oder [mm] \left|x-x_0 \right| [/mm] < [mm] \delta [/mm] oder [mm] \left|x_1-x_0 \right| [/mm] < [mm] \delta [/mm] , ist das richtig?

Mein Problem ist: wie kann ich [mm] \epsilon [/mm] in Abhängigkeit von [mm] \delta [/mm] bestimmen, damit alle Bedingungen erfüllt sind?

Ich bitte um Hinweise und Erklärung (aber keine konkrete Lösung). ich bedanke mich im Voraus.

Viele Grüße

        
Bezug
Zeige: f:R --> R ist "TIGSTE": Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 So 06.01.2008
Autor: koepper

Hallo und herzlich [willkommenmr]

> Eine Funktion [mm]f:\IR[/mm] -> [mm]\IR[/mm] heiße tigste im Punkt [mm]x_0,[/mm] wenn
>  
> [mm]\forall\ \delta[/mm] >0 : [mm]\exists\ \epsilon[/mm] >0 : [mm]\forall\[/mm] x [mm]\in \IR[/mm]
> : [mm]\left|x-x_0 \right|[/mm] < [mm]\delta \Rightarrow \left|f(x)-f(x_0) \right|[/mm]
> < [mm]\epsilon[/mm]
>  
> gilt. Zeigen Sie: Ist f in einem Punkt tigste, so ist f in
> allen Punkten tigste.

eine originelle Aufgabe :-)

> Meine Überlegung:
>  
> Der Unterschied zwischen der oben genannter tigster
> Funktion und der Definition der Stetigkeit ist nur der
> "Quantortausch"
>  
> Um "Tigste" zu beweisen, würde ich zuerst ein beliebiges
> [mm]\delta[/mm] >0 vorgeben (Beim Beweis der Stetigkeit gibt man
> dagegen ein [mm]\epsilon[/mm] >0 vor)
>  
> Meine Annahme (Voraussetzung) ist [mm]\left|x-x_0 \right|[/mm] <
> [mm]\delta[/mm] und ich muss [mm]\left|f(x)-f(x_0) \right|[/mm] < [mm]\epsilon[/mm]
> zeigen.
>  
> Da [mm]\delta[/mm] >0 in diesem Fall beliebig ist, kann ich auch x
> beliebig wählen, also
>  
> [mm]\left|x-x_1 \right|[/mm] < [mm]\delta[/mm]  oder [mm]\left|x-x_0 \right|[/mm] <
> [mm]\delta[/mm] oder [mm]\left|x_1-x_0 \right|[/mm] < [mm]\delta[/mm] , ist das
> richtig?
>  
> Mein Problem ist: wie kann ich [mm]\epsilon[/mm] in Abhängigkeit von
> [mm]\delta[/mm] bestimmen, damit alle Bedingungen erfüllt sind?

Mach dir zuerst klar, was hier die Herausforderung ist: Ein großes delta, oder ein kleines?
Dann überlege: Ein Epsilon, das für ein .......... delta gilt, gilt auch für ein ........ delta.
Um ein "universelles " Epsilon zu bekommen, wähle also delta........

Welche Eigenschaft müßte f haben, damit die Eigenschaft "tigste" überhaupt verletzt werden kann?
Und wie sollte das gehen bei einer Funktion $f [mm] \colon \IR \to \IR$? [/mm]

Gruß
Will

PS: Ich habe nicht das Gefühl, daß du deinen Namen verdienst ;-)
und noch ein kleiner Hinweis...
wir sehen es hier eigentlich etwas lieber, wenn du Fragen erstmal nicht in anderen Foren stellst, weil andernfalls immer das Risiko besteht, daß 2 Leute unabhängig voneinander gleichzeitig helfen. Also Tipp: Stell die Postings nicht gleichzeitig ein, sondern in einem gewissen zeitlichen Abstand (so etwa 3-4 Stunden) nacheinander, falls du in dem einen Forum keine Hilfe bekommst.

Bezug
                
Bezug
Zeige: f:R --> R ist "TIGSTE": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:39 Di 08.01.2008
Autor: Ich_bin_doof

Hallo koepper, ich denke , bei dieser Aufgabe geht es um ein großes delta (wegen der Quantoren: zu jedem DELTA gibt es ein EPSILON...) und ein EPSILON, das für ein kleines DELTA gilt, gilt auch für großes... würde ich sagen.


Aber um ehrlich zu sein, komme ich irgendwie nicht weiter. Könntest du mir bitte genauer erklären? Ich danke dir.

Aber ist f überhaupt tigste? (würde mich interessieren)


Viele Grüße

Bezug
                        
Bezug
Zeige: f:R --> R ist "TIGSTE": Antwort
Status: (Antwort) fertig Status 
Datum: 00:13 Do 10.01.2008
Autor: koepper

Hallo,

> Hallo koepper, ich denke , bei dieser Aufgabe geht es um
> ein großes delta (wegen der Quantoren: zu jedem DELTA gibt
> es ein EPSILON...)

das überzeugt mich nicht:
Bei der Definition der Stetigkeit sind die Quantoren die gleichen, aber dort ist ein kleines Epsilon die Herausforderung.

> und ein EPSILON, das für ein kleines
> DELTA gilt, gilt auch für großes... würde ich sagen.

überleg nochmal genau...

LG
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]