www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieZeigen Einheit in Z[sqrt(d)]
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - Zeigen Einheit in Z[sqrt(d)]
Zeigen Einheit in Z[sqrt(d)] < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen Einheit in Z[sqrt(d)]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Mo 10.09.2012
Autor: Loko

Aufgabe
Zeige, dass (x+y [mm] \wurzel{d}) [/mm] eine Einheit in [mm] \IZ[\wurzel{d}] [/mm] ist.

Hallo!

Dieses ist eigentlich nur ein Teilproblem einer anderen Frage, aber ich dachte vielleicht ist es so übersichtlicher ;)

Ich habe leider nie eine detallierte Ringe-Vorlesung gehabt, sodass ich nicht wirklich mit Einheiten und co. umzugehen weiß.

Ich weiß, dass ich zeigen muss, dass es a,b [mm] \in \IZ[\wurzel{d}] [/mm] geben muss, sodass (a+b [mm] \wurzel{d})(x+y \wurzel{d}) [/mm] = 1 (der Tipp wurde mir schon gegeben ;) )

Leider ist mein Wissen so gering, dass ich nicht mal weiß wie ich das zeigen soll.

Ich habe versucht in anderen Vorlesungen die Beispiele nach zu vollziehen, aber irgendwie ist mir das alles ziemlich unklar.
Herausgefunden habe ich auch, dass ich genauso gut mit der Norm rechnen kann (ich hoffe das stimmt?).

Ich freu mich über jegliche Tipps :)

Liebe Grüße!
Loko

        
Bezug
Zeigen Einheit in Z[sqrt(d)]: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 Mo 10.09.2012
Autor: Schadowmaster

Hey Loko,

Ich nehm an es geht um dieses Problem hier:
https://matheraum.de/read?i=911747

Es wäre besser, wenn du das in dem Tread klären könntest, denn auf diese Art ist es nicht übersichtlicher.
Im Gegenteil, deine Aussage ist in dieser Form unvollständig (was sollen $x,y$ sein, was soll $d$ sein?) und wenn man spontan mal annimmt $x,y,d$ seien ganze Zahlen ist die Aussage im allgemeinen sogar falsch (wähle etwa $x=2,y=1,d=-1$).

Damit die Aussage stimmt und man sie zeigen kann braucht man also eine ganze Reihe von Vorbedingungen; und damit wären wir dann doch wieder in deinem anderen Tread.

Von daher stell die Frage am besten im zugehörigen Tread, da wissen dann alle worum es geht - und es ist kein Problem mehrere Fragen zur selben Aufgabe zu stellen.

lg

Schadow

Bezug
        
Bezug
Zeigen Einheit in Z[sqrt(d)]: Antwort
Status: (Antwort) fertig Status 
Datum: 23:43 Mo 10.09.2012
Autor: HJKweseleit


> Zeige, dass (x+y [mm]\wurzel{d})[/mm] eine Einheit in
> [mm]\IZ[\wurzel{d}][/mm] ist.
>  Hallo!
>  
> Dieses ist eigentlich nur ein Teilproblem einer anderen
> Frage, aber ich dachte vielleicht ist es so
> übersichtlicher ;)
>  
> Ich habe leider nie eine detallierte Ringe-Vorlesung
> gehabt, sodass ich nicht wirklich mit Einheiten und co.
> umzugehen weiß.
>  
> Ich weiß, dass ich zeigen muss, dass es a,b [mm]\in \IZ[\wurzel{d}][/mm]
> geben muss, sodass (a+b [mm]\wurzel{d})(x+y \wurzel{d})[/mm] = 1
> (der Tipp wurde mir schon gegeben ;) )
>  

Ja, richtig. Aber für die Lösung geht es etwas einfacher:

Nenne das gesuchte Gebilde einfach mal z. Dann ist

z*(x+y [mm] \wurzel{d}) [/mm] = 1

Nun teilst du durch die Klammer:  

z = [mm] \bruch{1}{(x+y \wurzel{d})} [/mm]

Nun versuchst du, den Bruch zu "rationalisieren", indem du die Wurzel aus dem Nenner "entfernst". Tipp: 3. binom. Formel. (Sonst "rationalisieren des Nenners" nachschlagen)
Damit bekommt z dann die gewünschte Form.

Zur Logik: Eigentlich ist das noch kein Beweis, da du einfach benutzt, dass man 1 durch den Ausdruck teilen kann, er also eine Einheit ist - aber das sollst du ja gerade beweisen und darfst es daher nicht voraussetzen.

Indem du das aber doch tust, überlegst du logisch: Wenn der Ausdruck eine Einheit ist, dann müsste sein Inverses z=... lauten. Damit bekommst du das eizig mögliche z.

Der Beweis geht nun so: Du nimmst einfach das so ermittelte z (woher auch immer du es hast), multiplizierst es mit dem Ausdruck und erhältst 1. Das(!) ist dann der Beweis, das der Ausdruck eine Eiheit ist.



> Leider ist mein Wissen so gering, dass ich nicht mal weiß
> wie ich das zeigen soll.

Hoffentlich nicht mehr!

>  
> Ich habe versucht in anderen Vorlesungen die Beispiele nach
> zu vollziehen, aber irgendwie ist mir das alles ziemlich
> unklar.
> Herausgefunden habe ich auch, dass ich genauso gut mit der
> Norm rechnen kann (ich hoffe das stimmt?).
>  
> Ich freu mich über jegliche Tipps :)
>  
> Liebe Grüße!
>  Loko


Bezug
                
Bezug
Zeigen Einheit in Z[sqrt(d)]: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:23 Sa 22.09.2012
Autor: Loko

Dankeschön!! Ja, das hilft! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]