www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenZeigen, dass Relation reflexiv
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Relationen" - Zeigen, dass Relation reflexiv
Zeigen, dass Relation reflexiv < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen, dass Relation reflexiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:02 Mi 15.07.2009
Autor: ChaoZz

Aufgabe
Auf der Menge [mm] \IZ [/mm] der ganzen Zahlen werde eine binäre Relation erklärt durch xRy [mm] \gdw \existsk \in \IZ [/mm] : x+xy = 2k
d.h. x + xy ist eine gerade Zahl.
Zeigen Sie, dass die Relation reflexiv und transitiv ist. Ist R auch symmetrisch?

Hallo,

mir ist klar, dass die Menge [mm] \IZ [/mm] {0,1,-1,2,-2 ....} ist. Wenn nun R = {(1,1),(2,2),(3,3)...} ist, dann wird ja die Bedienung (x+xy = 2k)  erfüllt somit ist R reflexiv. Wie aber schreib ich nun die Lösung mathematisch? Mein Prof meinte, ich müsse das irgendwie in einer Zeile mathematisch schreiben können, ich weiß nur nicht wie.

Ich bitte also hier ausnahmsweise mal um die konkrete Lösung. An der Darstellung würde ich mich dann orientieren um zu zeigen, dass R transitiv ist.
Vielen Dank vorab

        
Bezug
Zeigen, dass Relation reflexiv: Antwort
Status: (Antwort) fertig Status 
Datum: 09:29 Mi 15.07.2009
Autor: angela.h.b.


> Auf der Menge [mm]\IZ[/mm] der ganzen Zahlen werde eine binäre
> Relation erklärt durch xRy [mm]\gdw \exists k \in \IZ[/mm] : x+xy =
> 2k
>  d.h. x + xy ist eine gerade Zahl.
>  Zeigen Sie, dass die Relation reflexiv und transitiv ist.
> Ist R auch symmetrisch?
>  Hallo,
>  
> mir ist klar, dass die Menge [mm]\IZ[/mm] {0,1,-1,2,-2 ....} ist.
> Wenn nun R = {(1,1),(2,2),(3,3)...} ist, dann wird ja die
> Bedienung (x+xy = 2k)  erfüllt somit ist R reflexiv. Wie
> aber schreib ich nun die Lösung mathematisch?

Hallo,

es geht hier zunächst gar nicht um den "mathematischen" Aufschrieb, sondern es geht darum, daß Du einfach sagst, daß die von Dir genannten Elemente in der Relation sind - und Du nennst keinerlei Grund dafür.

Bei den drei Elementen, die Du angibst, kann ich das ja exemplarisch nachrechnen, aber mit den Pünktchen deutest Du ja an, daß die Bedingung zRz für jedes [mm] z\in \IZ [/mm] gilt.

Würde es Dir gelingen, mich mit Worten zu überzeugen? Wenn ja, dann müßte man das nur noch in Mathematiksprache übersetzen.

---

Zur Vorgehensweise:

ist Dir klar, daß Du für die Reflexivität für jedes [mm] z\in \IZ [/mm] untersuchen mußt, ob [mm] z+z^2 [/mm] gerade ist? Anhand dessen entscheidet man ja, ob zRz gilt oder nicht.


Zwei Möglichkeiten:

1. Betrachte die Fälle "z gerade" und "z ungerade" getrennt

2. Klammere in [mm] z+z^2 [/mm] das z aus ...

(Möglichkeit 2 ist hübscher.)

Gruß v. Angela




Mein Prof

> meinte, ich müsse das irgendwie in einer Zeile
> mathematisch schreiben können, ich weiß nur nicht wie.
>  
> Ich bitte also hier ausnahmsweise mal um die konkrete
> Lösung. An der Darstellung würde ich mich dann
> orientieren um zu zeigen, dass R transitiv ist.
>  Vielen Dank vorab  


Bezug
        
Bezug
Zeigen, dass Relation reflexiv: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Mi 15.07.2009
Autor: fred97


> Auf der Menge [mm]\IZ[/mm] der ganzen Zahlen werde eine binäre
> Relation erklärt durch xRy [mm]\gdw \existsk \in \IZ[/mm] : x+xy =
> 2k
>  d.h. x + xy ist eine gerade Zahl.
>  Zeigen Sie, dass die Relation reflexiv und transitiv ist.
> Ist R auch symmetrisch?
>  Hallo,
>  
> mir ist klar, dass die Menge [mm]\IZ[/mm] {0,1,-1,2,-2 ....} ist.
> Wenn nun R = {(1,1),(2,2),(3,3)...} ist,

Das ist aber nicht der Fall !

{(1,1),(2,2),(3,3)...} ist eine Teilmenge von R

Es ist z.B.:

                 0Ry für jedes y [mm] \in \IZ [/mm]

oder

                  1R(2y-1) für jedes y [mm] \in \IZ [/mm]


FRED




> dann wird ja die
> Bedienung (x+xy = 2k)  erfüllt somit ist R reflexiv. Wie
> aber schreib ich nun die Lösung mathematisch? Mein Prof
> meinte, ich müsse das irgendwie in einer Zeile
> mathematisch schreiben können, ich weiß nur nicht wie.
>  
> Ich bitte also hier ausnahmsweise mal um die konkrete
> Lösung. An der Darstellung würde ich mich dann
> orientieren um zu zeigen, dass R transitiv ist.
>  Vielen Dank vorab  


Bezug
        
Bezug
Zeigen, dass Relation reflexiv: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Mi 15.07.2009
Autor: abakus


> Auf der Menge [mm]\IZ[/mm] der ganzen Zahlen werde eine binäre
> Relation erklärt durch xRy [mm]\gdw \existsk \in \IZ[/mm] : x+xy =
> 2k
>  d.h. x + xy ist eine gerade Zahl.

Hallo,
wie müssen denn x und y beschaffen sein, damit x+xy gerade ist?
Fall 1: x ist gerade. Daraus folgt....

Fall 2: x ist ungerade. Dann ist x+xy=x(1+y) trotzedem gerade, falls ...
Gruß Abakus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]