www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisZeigen der Differenzierbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Zeigen der Differenzierbarkeit
Zeigen der Differenzierbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen der Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 Mi 18.01.2006
Autor: F.Michael

Aufgabe
Warum ist die durch f(0):=0 und
                        
f(x) := x(1+2xsin( [mm] \bruch{1}{x})) [/mm]

f: IR [mm] \to [/mm] IR überall differnenzierbar

Hallo zusammen!

Meine Frage wäre, wie ich zeige dass eine Fkt. überall Differenzierbar ist? Das sie stetig ist, hab ich schon gezeigt. Wie ich zeige das eine Fkt. an einem Punkt stetig ist weiß ich auch.

Ich habe versucht allg. zu zeigen, dass der lim [mm] \bruch{f(x+h) - f(h)}{h} [/mm] mit h gegen 0 exisitiert, aber irgendwie klappt das nicht.

Vielen Dank schon mal im Vorraus!

MFG

        
Bezug
Zeigen der Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Mi 18.01.2006
Autor: SEcki


> Ich habe versucht allg. zu zeigen, dass der lim
> [mm]\bruch{f(x+h) - f(h)}{h}[/mm] mit h gegen 0 exisitiert, aber
> irgendwie klappt das nicht.

Aber genauso macht man das - setz doch mal ein,und kürze dann auch mal entsprechend. Dann steht es doch schon da.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]