www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisZeigen der Differenzierbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Zeigen der Differenzierbarkeit
Zeigen der Differenzierbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen der Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:27 Di 08.06.2004
Autor: Laura20

Hallo!
Ich komme mit folgender Aufgabe einfach nicht zurecht, da ich Aufgaben dieser Art (differenzierbarkeit zeigen) noch nie bearbeitet habe. Ich würde mich sehr freuen, wenn ihr mir helfen könntet :)
Hier ist die Aufgabe:

Die Funktion f: [mm] [\bruch{-\pi}{2}, \bruch{\pi}{2}] \to\IR [/mm] sei definiert durch:

[mm] f(t)=\vmat{ sin(t) }- \vmat{ t }cos(t) [/mm]

Zeigen sie, dass f differenzierbar ist.

p.s. Die Eingabehilfen sind übrigens wirklich gut.

        
Bezug
Zeigen der Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Di 08.06.2004
Autor: Julius

Liebe Laura!

> Die Funktion f: [mm] [\bruch{-\pi}{2}, \bruch{\pi}{2}] \to\IR [/mm]
> sei definiert durch:
>  
> [mm] f(t)=\vmat{ sin(t) }- \vmat{ t }cos(t) [/mm]
>  
> Zeigen sie, dass f differenzierbar ist.

Interessant ist die Differenzierbarkeit ja nur für $t=0$ Für $t [mm] \ne [/mm] 0$ hat man

$f(t) = [mm] \sin(t) [/mm] - [mm] t\cdot \cos(t)$ [/mm]      im Falle $t>0$

und

$f(t) = [mm] -\sin(t) [/mm] + [mm] t\cdot \cos(t)$ [/mm]     im Falle $t<0$

und in beiden Fällen ist die Differenzierbarkeit offenkundig.

Für $t=0$ berechnen wir nun den linksseitigen und den rechtsseitigen Differentialquotienten und schauen nach, ob beide Grenzwerte existieren und identisch sind. In diesem Fall ist nämlich $f$ in $t=0$ differentierbar.

Es gilt aber:

[mm]\lim\limits_{t \downarrow 0} \frac{f(t) - f(0)}{t} = \lim\limits_{t \downarrow 0} \frac{\sin(t) - t \cdot \cos(t)}{t} = \underbrace{\lim\limits_{t \downarrow 0} \frac{sin(t)}{t}}_{=\, 1} - \underbrace{\lim\limits_{t \downarrow 0} \cos(t)}_{=\,1} = 0[/mm]

und

[mm]\lim\limits_{t \uparrow 0} \frac{f(t) - f(0)}{t} = \ldots[/mm]

Führe das bitte selbst zu Ende und melde dich bei Rückfragen und/oder einem Lösungsvorschlag einfach wieder.

Liebe Grüße
Julius


Bezug
                
Bezug
Zeigen der Differenzierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Mi 09.06.2004
Autor: Laura20

Hi Julius!
Also, wenn ich t von unten gegen 0 gehen lasse sieht das bei mir genauso aus, also:

[mm] \limes_{t\uparrow\ 0} \bruch{f(t)-f(0)}{t} [/mm] = [mm] \limes_{t\uparrow\ 0} \bruch{sin(t)-tcos(t)}{t} [/mm] = [mm] \limes_{t\uparrow\ 0} \bruch{sin(t)}{t} [/mm] - [mm] \limes_{t\uparrow\ 0} [/mm] cos(t) = 1-1 = 0

Ist das richtig bzw. ist das dann schon der Beweis? Kommt mir irgentwie ein bißchen einfach vor. Andererseits ist damit ja eigentlich eindeutig gezeigt dass rechts-und linkseitiger Grenzwert übereinstimmen und die funktion damit in t=0 eindeutig differenzierbar ist, was ja quasi die Aufgabe war. Also bin ich jetzt ja fertig, oder?

Bezug
                        
Bezug
Zeigen der Differenzierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Mi 09.06.2004
Autor: Julius

Liebe Laura!

> Hi Julius!
>  Also, wenn ich t von unten gegen 0 gehen lasse sieht das
> bei mir genauso aus, also:
>
> [mm] \limes_{t\uparrow\ 0} \bruch{f(t)-f(0)}{t} [/mm] =
> [mm] \limes_{t\uparrow\ 0} \bruch{sin(t)-tcos(t)}{t} [/mm] =
> [mm] \limes_{t\uparrow\ 0} \bruch{sin(t)}{t} [/mm] -
> [mm] \limes_{t\uparrow\ 0} [/mm] cos(t) = 1-1 = 0

Du hast die Betragsstriche falsch aufgelöst.

Richtig muss es heißen:

[mm]\limes_{t\uparrow\ 0} \bruch{f(t)-f(0)}{t}[/mm]

[mm]= \limes_{t\uparrow\ 0} \bruch{-\sin(t)+t\cos(t)}{t}[/mm]

[mm]= \limes_{t\uparrow\ 0} \bruch{-\sin(t)}{t} + \limes_{t\uparrow\ 0} \cos(t)[/mm]

[mm]= -1+1 = 0[/mm].


>  ist das dann schon der Beweis?

Wenn du ihn so verbesserst, dann war es das. [ok]

Liebe Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]