www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenZeigen von 2 Nullfolgen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Zeigen von 2 Nullfolgen
Zeigen von 2 Nullfolgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen von 2 Nullfolgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 Mi 09.11.2011
Autor: ueberallmathe

Aufgabe
Sei [mm] b_{n}:= betrag(a_{n}) [/mm] + 1 - [mm] \wurzel((a_{n})^{2} [/mm] + 1). Zeigen Sie: Ist [mm] b_{n} [/mm] eine Nullfolge, dann auch [mm] a_{n}. [/mm]

Bei [mm] b_{n} [/mm] muss man ja nur zeigen ob es ein [mm] \varepsilon \ge [/mm] 0 gibt ab dem jedes weitere folgenglied [mm] n_{0} [/mm] in diese [mm] \varepsilon [/mm] - Umgebung fällt.
Meine Frage wäre jetzt, wie man zeigt dass auch [mm] a_{n} [/mm] gegen 0 konvergiert. Muss man dafür den Therm umformen oder gibts da einen bestimmten Trick?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zeigen von 2 Nullfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:06 Do 10.11.2011
Autor: kamaleonti

Moin,
> Sei [mm]b_{n}:= betrag(a_{n})[/mm] + 1 - [mm]\wurzel((a_{n})^{2}[/mm] + 1).
> Zeigen Sie: Ist [mm]b_{n}[/mm] eine Nullfolge, dann auch [mm]a_{n}.[/mm]

[mm] b_n=|a_n|+1-\sqrt{a_n^2+1}=\frac{(|a_n|+1-\sqrt{a_n^2+1})(|a_n|+1+\sqrt{a_n^2+1})}{|a_n|+1+\sqrt{a_n^2+1}}=\frac{(|a_n|+1)^2-(a_n^2+1)}{|a_n|+1+\sqrt{a_n^2+1}}=\frac{2|a_n|}{|a_n|+1+\sqrt{a_n^2+1}} [/mm]

Für [mm] a_n\neq [/mm] 0 kannst du die Gleichung mit [mm] |a_n| [/mm] kürzen. Dann siehst du ganz leicht, dass [mm] a_n\to0 [/mm] gelten muss, wenn [mm] b_n\to0,n\to\infty. [/mm]

LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]