www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungZeigen von Volumen Rotationsk.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - Zeigen von Volumen Rotationsk.
Zeigen von Volumen Rotationsk. < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zeigen von Volumen Rotationsk.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Mo 24.11.2014
Autor: HenriD

Aufgabe
Der Graph der Funktion [mm] f(x)=4*\wurzel{x}*e^{-0,5x} [/mm] die durch x=u bestimmte Gerade und die x-Achse schließen im Intervall [0;u] eine Fläche ein die um die x-Achse rotiert.
Bestimmen sie das Volumen des Rotationskörpers
Bestimmen sie V=lim V (u) mit u-> unendlich
Zeigen sie, dass es ein u mit 1,6<u<1,7 mit V(u)=1/2V

Volumen und Volumen mit lim habe ich bereits bestimmt.
Ein Problem habe ich beim Verständnis der letzten Aufgabe.
Ich habe bereits eine Gleichung in der das Volumen mit der Abhängigkeit von u bestimmt ist nun fehlt mir der Ansatz.
[mm] \pi*(8u*(-e^-u)-8*e^-u+8)=V [/mm]

Diese Gleichung habe ich und sie sollte auch richtig sein.
Wenn ich jetzt für V 0,5 einsetzte bekomme ich jedoch kein logisches Ergebnis. Es sollte ja eigentlich im Bereich von 1,6 und 1,7 liegen tut es aber nicht.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Zeigen von Volumen Rotationsk.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:26 Mo 24.11.2014
Autor: chrisno

Hallo und [willkommenmr]

Ich denke, Du hast die Aufgabe nicht richtig interpretiert.

> V=lim V (u) mit u-> unendlich

Diesen Wert hast Du bestimmt. Ich habe das nicht nachgerechnet, nach Deiner Angabe müsste es [mm] 8$\pi$ [/mm] sein.

Nun sollst Du zeigen, dass $V(u) = [mm] \pi\cdot{}(8u\cdot{}(-e^-u)-8\cdot{}e^-u+8) [/mm] $ dann $0,5 [mm] \cdot [/mm] V$ also $4 [mm] \pi$ [/mm] ergibt, wenn u in den angegebenen Grenzen liegt.


Bezug
                
Bezug
Zeigen von Volumen Rotationsk.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Mo 24.11.2014
Autor: HenriD

Sehr vielen Dank für die schnelle Antwort.
Manchmal hat man ein Brett vor'm Kopf .


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]