www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikZentripetalkraft, Globus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Physik" - Zentripetalkraft, Globus
Zentripetalkraft, Globus < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zentripetalkraft, Globus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Di 27.12.2016
Autor: taytm

Aufgabe
Kleine Max setzt sein Matchboxauto auf den höchsten Punkt eines Globus und lässt es herunter rollen. Das Matchboxauto rollt immer am gleichen Breitengrad vom Globus. Berechne diesen.


Hi,

das ist so eine Aufgabe, bei der ich keine Ahnung habe, was ich eigentlich so wirklich mache.

Kann man das so rechnen?

Das Auto fällt dann vom Globus, wenn die Zentripetalkraft kleiner als der Anteil von der Schwerkraft wird, der senkrecht auf den Globus wirkt.
Wenn jetzt [mm] $\alpha$ [/mm] der Winkel $a$ in der Skizze hier ist: http://imgur.com/BOmkX75

Dann ist der Anteil von der Schwerkraft [mm] $g_N [/mm] = g [mm] \sin \alpha$ [/mm]

Die Zentripetalkraft ist [mm] $a_Z [/mm] = [mm] \frac{v^2}{r}$, [/mm] $r$ Radius vom Globus

Jetzt muss ich wissen, wie schnell das Auto bei einer bestimmten Höhe ist. Kann ich das über Energieerhalt ausrechnen?

Also beim Winkel [mm] $\alpha$ [/mm] ist der Höhenunterschied zum Anfang [mm] $\Delta [/mm] h = r - [mm] \sin(\alpha) \cdot [/mm] r$, also [mm] $\frac{1}{2} [/mm] m [mm] v^2 [/mm] = [mm] E_\text{kin} [/mm] = [mm] \Delta E_\text{pot} [/mm] = mg [mm] \Delta [/mm] h$, was zu $v = [mm] \sqrt{2 gr (1 - sin(\alpha))}$ [/mm] führt.

Dann würde sich die unbannte Größe $r$ in [mm] $a_Z$ [/mm] rauskürzen und man könnte rechnen: [mm] $a_Z [/mm] = [mm] g_N$ [/mm] gdw [mm] $\frac{v^2}{r} [/mm] = g [mm] \sin(\alpha)$ [/mm] gdw $2g (1 - [mm] \sin(\alpha)) [/mm] = g [mm] \sin(\alpha)$ [/mm] gdw $2 - 2 [mm] \sin(\alpha) [/mm] = [mm] \sin(\alpha)$ [/mm] gdw $2 = 3 [mm] \sin(\alpha)$ [/mm] gdw [mm] $\alpha [/mm] = [mm] \arcsin(\frac{2}{3}) \approx 41.8^\circ$. [/mm]

Wäre das richtig gerechnet?

Vielen dank und freundliche Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Zentripetalkraft, Globus: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Di 27.12.2016
Autor: Event_Horizon

Hallo!

Ich kann an deiner Rechnung nichts falsches entdecken.  
Scherzeshalber könnte man sagen, daß ein Globus üblicherweise eine um 22,5° gekippte Achse hat, genau so, wie die Achse der Erde auch gekippt ist. Daher hebt das Auto eigentlich keinesfalls immer am gleichen Breitengrad ab, aber wir wissen ja, was in der Aufgabe eigentlich gefragt ist.

Eine Sache gibt es aber dennoch: Die Zentripetalkraft ist diejenige, die zum Kreisinneren zeigt, die Zentrifugalkraft zeigt davon weg.
Demnach erzeugt die Gravitation die Zentripetalkraft, die Geschwindigkeit die Zentrifugalkraft. Wenn letztere größer als erstere ist, hebt das Auto ab.



Bezug
                
Bezug
Zentripetalkraft, Globus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:49 Fr 30.12.2016
Autor: taytm

Hey,

danke fürs Anschauen. Deine Anmerkung zur Zentripetal/fugalkraft ist hilfreich. :)

Dass der Globus eigentlich gekippt ist, war meine Schuld; in der Aufgabe steht sogar, dass die Achse senkrecht zum Erdboden stehe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]