www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraZentrum von GLK(V)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Zentrum von GLK(V)
Zentrum von GLK(V) < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zentrum von GLK(V): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:16 Di 13.12.2005
Autor: Willi

Aufgabe
Es sei V ein endlich-dimensionaler VEktorraum über einem Körper K. Ziel dieser Aufgabe ist es, das Zentrum [mm] Zent(GL_{k}(V)):= [/mm] {F [mm] \in GL_{k}(V): [/mm] F [mm] \circ [/mm] G= G [mm] \circ [/mm] F} der Gruppe [mm] GL_{k}(V) [/mm] zu bestimmen. Dazu sei F [mm] \in Zent(GL_{k}(V)) [/mm] beliebig. Dann zeige man:

(a) Für jedes v [mm] \in [/mm] V ist die Menge {v, F(v)} linear abhängig.
[Tipp: Unter der Annahme, dass {v, F(v)} linear unabhängig wäre, zeige man, das es ein G [mm] \in GL_{k}(V) [/mm] mit G(v)=v und G(F(v))=v+F(v) gäbe. Nach Vorraussetzung gilt dann G(F(v))=F(G(v)); diese Gleichung führe man auf einen Widerspruch.]

(b) Es existiert [mm] \lambda \in [/mm] K\ {0} mit F= [mm] \lambda id_{v}. [/mm]
[Tipp: Man beweise die folgenden Behauptungen: Wegen (a) gibt es zu jedem v [mm] \in [/mm] V \ {0} genau (!) ein [mm] \lambda_{v} \in [/mm] K \ {0} mit [mm] F(v)=\lambda_{v} \*v. [/mm] Wäre nun [mm] \lambda_{v} \not= \lambda_{w} [/mm] für gewisse v,w [mm] \in [/mm] V \ {0}, so sind v und w jedenfalls linear unabhängig.
Außerdem gilt dann
[mm] \lambda_{v+w}\*(v+w) [/mm] = F(v+w)=F(v) + F(w)= [mm] \lambda_{v}\*v [/mm] + [mm] \lambda_{w}\*w, [/mm] woraus ein Widerspruch zur ANnahme folgt. Daruas folgt (b).]

Hieraus folgere man [mm] Zent(GL_{k}(V))= \{\lambda id_{v}| \lambda \in K \ {0}}. [/mm]

Hey Leute,
kann man mir vielleicht irgendwie bei dieser schreklichen Aufgabe helfen?
Habe leider (trotz Tipp) keine Ahnung wie ich das beweisen soll.
Wie soll ich z.B. diese lineare abhängigkeit beweisen? Hier bei dieser Aufgabe krieg ich das irgendwie nicht hin.
Bin dankbar für alle Hinweise/Tipps/Antworten.
DANKE.

        
Bezug
Zentrum von GLK(V): Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 Mi 14.12.2005
Autor: mathiash

Hallo Willi,

zum ersten Teil:

wenn v und F(v) lin. unabh. w"aren, so koennte man sie erweitern zu einer
Basis   v, F(v), [mm] v_3,.... [/mm] von V   "uber K. Dann kann man zB

G(v)=v , G(F(v))= v+F(v), [mm] G(v_j)=v_j [/mm] für [mm] j\geq [/mm] 3 setzen, dies definiert eine lineare Abb.

[mm] G:V\to [/mm] V, und da v und F(v) laut Ann. lin. unabh. sind, ist auch [mm] G\in GL_K(V). [/mm]

Zum zweiten Teil:

Wir wissen also, dass v,F(v) lin. abh. sind. Aber das heisst doch gerade, dass es
[mm] \lambda_v [/mm] gibt mit [mm] F(v)=\lambda \cdot [/mm] v.

Waehle wieder eine Basis von V, zB [mm] e_i,i=1,2,..... [/mm]

Dann ist -weil F ja insb. linear ist - fuer alle i und alle [mm] v=a\cdot e_i, a\in [/mm] K

[mm] \lambda_v=\lambda_{e_i} [/mm]

Nun muss man nur noch zeigen, dass fuer [mm] i\neq [/mm] j auch [mm] \lambda_i=\lambda_j [/mm] gilt,
aber der Beweis steht doch dort schon.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]