www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisZerfallsprozess
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Zerfallsprozess
Zerfallsprozess < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerfallsprozess: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:28 Mo 20.06.2005
Autor: Fingolfin

Hallo,

ich brauche Hilfe bei einer Aufgabe:

Ein Zerfallsprozess für eine radioaktive Substanz genüge der Gleichung y´ = [mm] -\alpha y^p [/mm] mit positiven Konstanten [mm] \alpha [/mm] und p. Dabei gibt y(t) die Masse der Substanz zur Zeit t an.
Man zeige: Ist p < 1, so ist die Substanz nach einer gewissen Zeit vollständig zerfallen, d.h. [mm] \exists [/mm] T [mm] \in \IR [/mm] mit y(T) = 0; ist p [mm] \ge [/mm] 1, so strebt y(t) gegen Null, ist aber nie exakt Null.

Ich weiss nicht wie man so eine Aufgabe angeht. Differentialgleichungen kann ich (an sich ;) lösen.

Frage nirgendwo anders gestellt.

ciao
Fingolfin


        
Bezug
Zerfallsprozess: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Mo 20.06.2005
Autor: Fugre


> Hallo,
>  
> ich brauche Hilfe bei einer Aufgabe:
>  
> Ein Zerfallsprozess für eine radioaktive Substanz genüge
> der Gleichung y´ = [mm]-\alpha y^p[/mm] mit positiven Konstanten
> [mm]\alpha[/mm] und p. Dabei gibt y(t) die Masse der Substanz zur
> Zeit t an.
>  Man zeige: Ist p < 1, so ist die Substanz nach einer
> gewissen Zeit vollständig zerfallen, d.h. [mm]\exists[/mm] T [mm]\in \IR[/mm]
> mit y(T) = 0; ist p [mm]\ge[/mm] 1, so strebt y(t) gegen Null, ist
> aber nie exakt Null.
>  
> Ich weiss nicht wie man so eine Aufgabe angeht.
> Differentialgleichungen kann ich (an sich ;) lösen.
>  
> Frage nirgendwo anders gestellt.
>  
> ciao
>  Fingolfin
>  

Hallo Fingolfin,

dir ist bekannt, dass die erste Ableitung der Funktion [mm] $f'(x)=-\alpha f(x)^p [/mm] $ lautet;
außerdem weißt du, dass $f(x)$ der Masse der Substanz zum Zeitpunkt $x$ entspricht.
Nun müsstest du die Funktionenschar $f(x)$ bilden und zeigen, dass die Funktionen
dieser Schar nur für $p<1$ Nullstellen hat und sie für $p=1$ gegen null konvergiert,
also eine Grenzwertbetrachtung.
Ich hoffe, dass ich dir helfen konnte. Sollte etwas unklar sein, so frag bitte nach.

Liebe Grüße
Fugre

Bezug
                
Bezug
Zerfallsprozess: Frage
Status: (Frage) beantwortet Status 
Datum: 16:44 Mo 20.06.2005
Autor: Fingolfin

Hallo,

also von der Vorgehensweise her ist mir das jetzt klar geworden.
Das f(x) zu Bestimmen heisst ja nichts anderes, als die Differentialgleichung wie üblich zu lösen, oder?
Aber hier fängt's schon an: Von welchem Typ ist die Gleichung eigentlich?
Ich bekomme da nichts sinnvolles raus.

Gruß und thx
Fingolfin

Bezug
                        
Bezug
Zerfallsprozess: Hinweis
Status: (Antwort) fertig Status 
Datum: 00:54 Di 21.06.2005
Autor: leduart

Hallo
[mm] y'*y^{-p}=-\alpha [/mm]  und der Hinweis leit mal [mm] y^{-p+1} [/mm] ab müssten reichen! Vorsicht bei p=1 gesondert behandeln!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]