www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRelationenZerlegung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Relationen" - Zerlegung
Zerlegung < Relationen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegung: Ansatz/Tipp
Status: (Frage) beantwortet Status 
Datum: 18:37 Do 21.11.2013
Autor: pc_doctor

Aufgabe
Eine Zerlegung Z1 einer Menge A ist Verfeinerung einer Zerlegung Z2 falls jede Menge in Z1 Untermenge einer Menge in Z2 ist. Seien R1 und R2 Äquivalenzrel. in A und Z1 sowie Z2 die zugehörigen Zelegungen. Zeigen Sie R1 [mm] \subseteq [/mm] R2 genau dann , wenn Z1 ist Verfeinerung von Z2

Hallo,
also ich habe folgende Überlegung:

Ich habe eine Menge A z.B. A = { a,b,c,d,e}
Die Partition von A ist P = { {a,b,c} , {d,e}} (nicht disjunkt)

Jetzt kann ich P verfeinern , das ist dann Z= {{a,b} , {c} , {d,e}}. Z ist Verfeinerung von P.

Ab hier weiß ich nicht mehr , wie ich vorgehen soll...
Wie geht es jetzt weiter ?

Vielen Dank im Voraus.

        
Bezug
Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:53 Fr 22.11.2013
Autor: fred97

Du sollst das allgemein machen !!

Wir haben also 2 Äquivalenzrelationen [mm] $R_1,R_2 \subseteq [/mm] A [mm] \times [/mm] A$

Bezeichnungen: für j=1,2 sei für ein a [mm] \in [/mm] A:

    [mm] [a]_j:=\{b \in A: (a,b) \in R_j\}. [/mm]

Dann ist [mm] Z_j=\{[a]_j: a \in A\}. [/mm]

zeigen sollst Du, dass die beiden folgenden Aussagen äquivalent sind:

(1) [mm] R_1 \subseteq R_2, [/mm]

(2) zu jedem a [mm] \in [/mm] A gibt es ein b [mm] \in [/mm] A mit [mm] :[a]_1 \subseteq [b]_2. [/mm]

FRED

  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Relationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]