www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisZerlegung in Real / Im - Teil
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Komplexe Analysis" - Zerlegung in Real / Im - Teil
Zerlegung in Real / Im - Teil < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegung in Real / Im - Teil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 Do 31.05.2007
Autor: DarkSea

Ich habe folgende Frage: Ich muss die komplexe Funktion

f(z) = [mm] ln(\bruch{z-1}{z+1}) [/mm] in Real- und Imaginärteil zerlegen....

Ich hab bisher nur mit z = x + i*y das Argument umgeformt:

f(z) = [mm] ln(\bruch{x^{2}+y^{2}-1+2*iy}{x^{2}+y^{2}+2x +1}) [/mm]

Von da komme ich allerdings nicht weiter, ich weiß nicht, wie man das i aus dem ln rausbekommen soll... Sollte am Ende die Form:

f(z) = u(x,y) + i*v(x,y)

haben...

Ist das irgendwie möglich?

(Hintergrund ist die Berechnung eines elektrostatischen Potentials mittels einer analytischen Funktion....)

Danke und Grüße

        
Bezug
Zerlegung in Real / Im - Teil: Antwort
Status: (Antwort) fertig Status 
Datum: 18:08 Do 31.05.2007
Autor: Hund

Hallo,

du kannst z.B. den Log in eine Potenzreihe entwickeln, oder die Definition des Log benutzten. Die ist ja:
Log z= log IzI +iArg(z)
Arg(z) ist ja reell, also hättest du dann eine Zerlegung des Log in Re und Im. Und von der Komposition mit dem Bruchterm auch.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]