www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorieZerlegung von Graphen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Graphentheorie" - Zerlegung von Graphen
Zerlegung von Graphen < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zerlegung von Graphen: Kapitel 9
Status: (Frage) überfällig Status 
Datum: 19:35 Mo 01.06.2009
Autor: Kiki85

Aufgabe
Beweise den Satz:

Wenn man den Graphen [mm] K_n [/mm] in vollständig bipartite Untergraphen [mm] H_1,...,H_m [/mm] zerlegt, dann ist m [mm] \ge [/mm] n-1

Die ist ein Satz aus dem Buch der Beweise. Mir liegt der Beweis also vor, allerdings versteh ich ihn nicht so ganz. Er lautet:

Sei die Eckenmenge von [mm] K_n [/mm] mit {1,...,n} bezeichnet, und seien [mm] L_j, R_j [/mm] die definierenden Eckenmengen der vollständig bipartiten Graphen [mm] H_j, [/mm] j=1,...,m. Jeder Ecke i ordnen wir eine Variable [mm] x_i [/mm] zu. Da [mm] H_1,...,H_m [/mm] eine Zerlegung des [mm] K_n [/mm] bilden, haben wir:

[mm] \summe_{i
Nun nehmen wir an, dass der Satz falsch ist, m<n-1. Dann hat das LGS

[mm] x_1+...+x_n=0, [/mm]

[mm] \summe_{a\in\ L_k} x_a=0 [/mm] (k=1,...,m)

weniger Gleichungen als Variablen also gibt es eine nichttriviale Lösung

[mm] c_1,...,c_n. [/mm] Aus (1) schließen wir

[mm] \summe_{i
aber dies impliziert

[mm] 0=(c_1+...+c_n)² [/mm] = [mm] \summe_{i=1}^{n}c_i²+2\summe_{i0 [/mm]
also ein Widerspruch der den Beweis abschließt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Meine Fragen lauten nun:

1. Was genau bedeutet egtl. [mm] \summe_{i
2. Wie komme ich überhaupt auf das LGS und wie habe ich die 2 Zeilen zu verstehen? Ich meine ich habe doch sowieso nur 2 Gleichungen und jede Menge Variablen. Was versteh ich da nicht?


        
Bezug
Zerlegung von Graphen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 03.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]