Zinsrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:29 So 30.10.2005 | Autor: | xxx |
Seit gestern abend sitze ich schon vor dieser Aufgabe, habe schon alles ausprobiert, aber es kommt mir einfach nicht raus. Ich weiß leider nicht mehr weiter, könnte mir jemand bitte weiterhelfen?
Ein Mann legt 300000 an in einer Bank mit einem Zinssatz von p=3,75% p.a. Dann fliegt er nach Brasilien. Nach 3 Jahren in Brasilien überlegt er das Geld nach Brasilien zu transferieren, die einen Zinssatz von p=4,75% anbieten. Die Transferkosten betragen 1%.
a) Wieviel Geld (Euro) besitzt er nach dem Transfer?
[HAB ICH GEMACHT: =331681,13]
b) Wieviel Geld (Euro) besitz er nach 2 Jahren nach dem Transfer?
[HAB ICH AUCH SCHON GEMACHT: 363939,19]
Wieviele Jahre muß sein Geld auf der brasilianischen Bank liegen, um mindestens auf den selben Betrag angewachsen zu sein, wie wenn das Geld nicht transferiert worden wäre?
-> HIER KLEMMTS!!! Hier komme ich nicht mehr weiter? Bitte helft mir. Danke.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:46 So 30.10.2005 | Autor: | Loddar |
Hallo xxx,
!!
> a) Wieviel Geld (Euro) besitzt er nach dem Transfer?
> [HAB ICH GEMACHT: =331681,13]
> b) Wieviel Geld (Euro) besitz er nach 2 Jahren nach dem
> Transfer?
> [HAB ICH AUCH SCHON GEMACHT: 363939,19]
> Wieviele Jahre muß sein Geld auf der brasilianischen Bank
> liegen, um mindestens auf den selben Betrag angewachsen zu
> sein, wie wenn das Geld nicht transferiert worden wäre?
Wieviel Geld hatte der Mann denn unmittelbar vor dem Transfer? Das waren doch 335031,45 .
Und unmittelbar nach dem Transfer, also nach dem Abzug der 1% Kosten waren es ja 331681,13 (siehe a.).
Und nun wird also die anzahl der Jahre gesucht, bis der Betrag von 335031,45 wieder erricht wird.
Dafür wenden wir wieder unsere Zinseszins-Formel [mm] $K_n [/mm] \ = \ [mm] K_0 [/mm] * [mm] q^n$ [/mm] an:
$335031,45 \ = \ 331681,13 * [mm] 1,0475^n$
[/mm]
Und nun diese Formel nach $n_$ umstellen.
Gruß
Loddar
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:14 So 30.10.2005 | Autor: | xxx |
Danke zunächst für deine Antwort Loddar, ich hatte den gleichen Ansatz, aber es stimmt nicht, hier kommt 0,2165... raus aber die Lösung sollte 1,048 Jahre sein.
Das Problem ist es die richtige Geldmenge zu finden, und das ist bei der Fragestellung sehr sehr schlecht ausfindig zu machen.
Also die Lösung lautet 1,048 Jahre, nur wie kommt man zu diesem Ergebnis? Ich hab schon alle Ergebnisse herausbekommen nur dieses leider nicht.
mfg,
xxx
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:54 So 30.10.2005 | Autor: | Loddar |
Hallo xxx!
Da hatte ich die aufgabenstellung wohl nicht sorgfältig durchgelesen ...
Dann lautet der Ansatz folgendermaßen:
[mm] $300000*1,0375^{n+3} [/mm] \ = \ [mm] 335031,45*1,0375^n [/mm] \ = \ 331681,13 * [mm] 1,0475^n$
[/mm]
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:58 So 30.10.2005 | Autor: | xxx |
Vielen vielen Dank Loddar. Ich weiß nicht wie ich mich bei Dir bedanken kann ...
Ich wünsch Dir noch ein schönes Wochenende, dank dir hab ich jetzt ein schönes Wochenende.
Mit freundlichen Grüßen,
xxx.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:03 So 30.10.2005 | Autor: | xxx |
Das Ergebnis und die Formel wie man das ausrechnet hab ich, aber ich würde gerne wissen wie man das:
[mm] 335031,45*1,0375^n [/mm] = [mm] 331681,13*1,0475^n
[/mm]
nach n ableitet, die Schritte? Es sind ja auf beiden seiten ein n? Wie macht man das?
PS: Das hat mit der Aufgabe oben nichts zu tun, die habe ich jetzt abgeschlossen mich würde nur interessieren wie man eine Gleichung löst auf deren beiden Seiten die gleiche Variable ist.
Vielen Dank imVoraus.> Hallo xxx!
>
>
> Da hatte ich die aufgabenstellung wohl nicht sorgfältig
> durchgelesen ...
>
>
> Dann lautet der Ansatz folgendermaßen:
>
>
> [mm]300000*1,0375^{n+3} \ = \ 335031,45*1,0375^n \ = \ 331681,13 * 1,0475^n[/mm]
>
>
> Gruß
> Loddar
>
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:24 So 30.10.2005 | Autor: | Loddar |
Hallo xxx!
[mm]335031,45*1,0375^n[/mm] = [mm]331681,13*1,0475^n[/mm]
Teile diese Gleichung doch durch $331681,13_$ sowie durch [mm] $1,0375^n$ [/mm] :
[mm] $\bruch{335031,45}{331681,13} [/mm] \ = \ [mm] \bruch{1,0475^n}{1,0375^n} [/mm] \ = \ [mm] \left(\bruch{1,0475}{1,0375}\right)^n$
[/mm]
Ist der Rest nun klar(er) ??
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:32 So 30.10.2005 | Autor: | xxx |
Nochmals hallo Loddar,
ok, jetzt ist wirklich alles klar, nochmals sorry für die Umstände. Du hast mir wirklich sehr weitergeholfen.
Vielen vielen Dank.
|
|
|
|