www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikZufallsvariable hat Bin.Vert.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Zufallsvariable hat Bin.Vert.
Zufallsvariable hat Bin.Vert. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zufallsvariable hat Bin.Vert.: Frage
Status: (Frage) beantwortet Status 
Datum: 01:13 Di 09.11.2004
Autor: roy

Hallo Ihr!
Ich habe folgendes Problem und wäre froh, wenn mir jemand von euch weiterhelfen könnte. Ich schildere euch einfach mal die Aufgabe:
"Sei E eine endliche Menge, p eine Zähldichte auf E, n eine natürliche Zahl und X=(X index a) mit a Element von E eine Zufallsvariable mit Werten in H index n mit (H index n):=Menge aller k-Vektoren (k index a mit a aus E) aus den positiven ganzen Zahlen hoch E, für die gilt: Summe aller k (index a) mit a aus E = n und Multinomialverteilung M (index n,p).
Zeigen Sie: Für jedes a aus E hat X (index a) die Binomialverteilung B (index n, p(a))."
Ich hoffe, da kommt alles so rüber, wie ich es meine. Ich wäre froh, wenn ihr mir weiterhelfen könntet und mir zeigt, wie man beweist, dass jedes X (index a) die Binomialverteilung hat.
Danke schon einmal!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Zufallsvariable hat Bin.Vert.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Di 09.11.2004
Autor: Stefan

Hallo roy!

Die Aufgabe ist zwar nicht schwierig, aber sie hat mich trotzdem unnötig Zeit gekostet, weil du sie unleserlich notiert hast. Bitte benutze in Zukunft unseren Formel-Editor.

Der Einfachheit halber sei [mm] $E=\{1,\ldots,n\}$ [/mm] und $a=j$.

Dann gilt:

[mm] $P(X_j=i)$ [/mm]

$= [mm] \sum\limits_{{{(i_1,\ldots,i_k) \in \IN_0^k} \atop {i_j=i}}: \sum\limits_{l=1}^k i_l=n} \frac{n!}{i_1! \cdot \ldots \cdot i_{j-1}! \cdot i_j! \cdot i_{j+1}! \cdot \ldots \cdot i_k!} p_1^{i_1} \cdot \ldots \cdot p_{j-1}^{i_{j-1}} \cdot p_j^{i_j} \cdot p_{j+1}^{i_{j+1}} \cdot \ldots \cdot p_k^{i_k}$ [/mm]

$= [mm] \frac{n!}{i!} \cdot p_j^i \sum\limits_{{{(i_1,\ldots,i_k) \in \IN_0^k} \atop {i_j=i}}: \sum\limits_{l=1}^k i_l=n} \frac{1}{i_1! \cdot \ldots \cdot i_{j-1}! \cdot i_{j+1}! \cdot \ldots \cdot i_k!} p_1^{i_1} \cdot \ldots \cdot p_{j-1}^{i_{j-1}} \cdot p_{j+1}^{i_{j+1}} \cdot \ldots \cdot p_k^{i_k}$ [/mm]

$= [mm] \frac{n!}{i!} \cdot p_j^i \sum\limits_{(i_1,\ldots, i_{j-1}, \hat{i_j}, i_{j+1},i_k) \in \IN_0^{k-1}: \sum\limits_{{l=1} \atop {l \ne j}}^n = n-i } \frac{1}{i_1! \cdot \ldots \cdot i_{j-1}! \cdot i_{j+1}! \cdot \ldots \cdot i_k!} p_1^{i_1} \cdot \ldots \cdot p_{j-1}^{i_{j-1}} \cdot p_{j+1}^{i_{j+1}} \cdot \ldots \cdot p_k^{i_k}$ [/mm]

$= [mm] \frac{n!}{i!\cdot (n-i)!} \cdot p_j^i \sum\limits_{(i_1,\ldots, i_{j-1}, \hat{i_j}, i_{j+1},i_k) \in \IN_0^{k-1}: \sum\limits_{{l=1} \atop {l \ne j}}^n = n-i } \frac{(n-i)!}{i_1! \cdot \ldots \cdot i_{j-1}! \cdot i_{j+1}! \cdot \ldots \cdot i_k!} p_1^{i_1} \cdot \ldots \cdot p_{j-1}^{i_{j-1}} \cdot p_{j+1}^{i_{j+1}} \cdot \ldots \cdot p_k^{i_k}$ [/mm]

$= [mm] \frac{n!}{i!\cdot (n-i)!} \cdot p_j^i \cdot (1-p_j)^{n-i} \sum\limits_{(i_1,\ldots, i_{j-1}, \hat{i_j}, i_{j+1},i_k) \in \IN_0^{k-1}: \sum\limits_{{l=1} \atop {l \ne j}}^n = n-i } \frac{(n-i)!}{i_1! \cdot \ldots \cdot i_{j-1}! \cdot i_{j+1}! \cdot \ldots \cdot i_k!} \left( \frac{p_1}{1-p_j}\right) ^{i_1} \cdot \ldots \cdot \left( \frac{p_{j-1}}{1-p_j} \right)^{i_{j-1}} \cdot \left( \frac{p_{j+1}}{1-p_j} \right)^{i_{j+1}} \cdot \ldots \cdot \left(\frac{p_k}{1-p_j}\right)^{i_k}$ [/mm]

$= {n [mm] \choose [/mm] i} [mm] p_j^i \cdot (1-p_j)^{n-i}$, [/mm]

was zu zeigen war.

(Unter der Summe steht teilweise [mm] $\hat{i_j}$, [/mm] was man schlecht lesen kann. Es soll bedeuten, dass [mm] $i_j$ [/mm] ausgelassen wird. Klicke auf die Formeln, wenn du sie größer lesen willst.

Es gibt sicherlich noch ein paar Punkte des Beweises, über die du noch einmal nachdenken solltest. Zum Beispiel, warum die letzte Summe gleich $1$ ist.

Mach dir das bitte klar und frage gegebenenfalls nach... :-)

Liebe Grüße
Stefan


Bezug
                
Bezug
Zufallsvariable hat Bin.Vert.: Danke
Status: (Frage) beantwortet Status 
Datum: 01:03 Sa 13.11.2004
Autor: roy

Hallo Stefan!
Finde ich voll gut von dir, dass du so schnell geantwortet hast. Ich hätte ehrlich gesagt nicht damit gerechnet, dass sich da so schnell was tut.
Wenn du mal wieder Zeit und Lust hast, kannst du mir dann vieleicht noch erläutern, wie du auf diesen Ansatz kommst und ob es unter Umständen noch andere Lösungsmöglichkeiten gibt?
Eilt aber nicht!
Danke nochmals!
Gruß Roy

Bezug
                        
Bezug
Zufallsvariable hat Bin.Vert.: Antwort
Status: (Antwort) fertig Status 
Datum: 01:38 Sa 13.11.2004
Autor: Stefan

Hallo Roy!

Ich denke nicht, dass es andere Ansätze und Lösungsmöglichkeiten gibt. Der Ansatz ist der denkbar einfachste: simples Losrechnen. ;-)

Ohne Witz: Ich weiß jetzt echt nicht, was ich dazu schreiben soll. Es steckt ja keine große Mathematik dahinter, sondern nur Rechnerei. Hmmmhhh... [kopfkratz] ;-)

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]