www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieZusammenhängede Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - Zusammenhängede Mengen
Zusammenhängede Mengen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zusammenhängede Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:25 Do 27.07.2017
Autor: Paivren

Hallo zusammen,

Frage zu zusammenhängenden Mengen.
"Eine Menge ist zusammenhängend, wenn man sie nicht als Vereinigung zweier disjunkter, offener und nichtleerer Mengen schreiben kann."

Die reellen Zahlen sind anscheinend zusammenhängend, aber wie kann man sie als obige Vereinigung darstellen?

Die Vereinigung zweier offener, disjunkter Intervalle zum Beispiel lässt doch zwangsweise mindestens einen Punkt aus, wie zB. bei
[mm] (-\infty, [/mm] 1[ und [mm] ]1,\infty) [/mm]

Gruß
Paivren

        
Bezug
Zusammenhängede Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:26 Do 27.07.2017
Autor: Paivren

Oh, ich merke selber meinen Fehler... ich habe das "nicht" komplett außer Acht gelassen.

Bezug
        
Bezug
Zusammenhängede Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 Do 27.07.2017
Autor: Paivren

Neue Frage:

Wie sieht es mit [mm] \IR [/mm] \ [mm] \IZ [/mm] aus? Ich würde sagen, diese Menge ist nicht zusammenhängend, ich kann ja schreiben [mm] \IR [/mm] \ [mm] \IZ [/mm] = [mm] (\IR [/mm] \ [mm] \IZ) \backslash [/mm] ]0,1[ [mm] \cup [/mm] ]0,1[.

Und mit [mm] \IR^{2} [/mm] \ [mm] \IZ^{2}? [/mm] Hier würde ich sagen, dass diese Menge zusammenhängend ist. Analog zum ersten Fall könnte ich Versuchen, ein offenes Quadrat aus der Ebene zu schneiden, mit den Eckpunkten bei benachbarten Zahlen aus [mm] \IZ^{2}. [/mm] Aber wenn das Komplement davon offen sein soll, bekomme ich als Vereinigung nicht wieder die ganze Ebene heraus.


Bezug
                
Bezug
Zusammenhängede Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Do 27.07.2017
Autor: donquijote


> Neue Frage:
>  
> Wie sieht es mit [mm]\IR[/mm] \ [mm]\IZ[/mm] aus? Ich würde sagen, diese
> Menge ist nicht zusammenhängend, ich kann ja schreiben [mm]\IR[/mm]
> \ [mm]\IZ[/mm] = [mm](\IR[/mm] \ [mm]\IZ) \backslash[/mm] ]0,1[ [mm]\cup[/mm] ]0,1[.
>  
> Und mit [mm]\IR^{2}[/mm] \ [mm]\IZ^{2}?[/mm] Hier würde ich sagen, dass
> diese Menge zusammenhängend ist. Analog zum ersten Fall
> könnte ich Versuchen, ein offenes Quadrat aus der Ebene zu
> schneiden, mit den Eckpunkten bei benachbarten Zahlen aus
> [mm]\IZ^{2}.[/mm] Aber wenn das Komplement davon offen sein soll,
> bekomme ich als Vereinigung nicht wieder die ganze Ebene
> heraus.
>  

Hallo,
das stimmt, [mm]M=\IR^2\setminus\IZ^2[/mm] ist zusammenhängend, was sich am einfachsten dadurch begründen lässt, indem man zeigt, dass M wegzusammenhängend ist, d.h. zu [mm]a,b\in M[/mm] gibt es eine stetige Abbildung [mm]\gamma:[0,1]\to M[/mm] mit [mm]\gamma(0)=a[/mm] und [mm]\gamma(1)=b[/mm].
Jede wegzusammenhängende Menge ist zusammenhängend, aber nicht umgekehrt.
Somit ist jeder Versuch, M ist Vereinigung disjunkter offener Mengen darzustellen, zum Scheitern verurteilt.


Bezug
                        
Bezug
Zusammenhängede Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:25 Do 27.07.2017
Autor: Paivren

Vielen Dank,

ja das mit dem wegzusammenhängend kenne ich, aber ich wollte es mit unserer gegebenen Definition nachvollziehen.
Danke für die Bestätigung :)

Bezug
        
Bezug
Zusammenhängede Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Do 27.07.2017
Autor: Diophant

Hallo,

> Die reellen Zahlen sind anscheinend zusammenhängend, aber wie kann man sie als obige Vereinigung darstellen?

sie sind ja eben gerade zusammenhängend, weil man sie nicht als Vereinigung disjunkter offener Intervalle darstellen kann.

> Die Vereinigung zweier offener, disjunkter Intervalle zum Beispiel lässt doch zwangsweise mindestens einen Punkt aus

Genau so ist es.


Gruß, Diophant

Bezug
                
Bezug
Zusammenhängede Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:59 Do 27.07.2017
Autor: Paivren

Hallo Diophant,

danke für die Antwort, ist mir aber beim nochmaligen Lesen auch direkt aufgefallen. Wie ist es mit meiner weitergehenden Frage :)?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]