Zusammenhängende Mengen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:20 Sa 20.06.2009 | Autor: | Doing |
Aufgabe | Sei X ein metrischer Raum.
Zeigen Sie folgende Äquivalenz:
X ist zusammenhängend <=> es gibt keine stetige Abbildung [mm] f:X->\IR [/mm] mit f(X)={0,1} |
Hallo an alle.
Es geht um die "=>"-Richtung. Ich hab vorher schon gezeigt, dass für jede stetige Abbildung f(X) auch zusammenhängend sein muss. Eigentlich sieht das jetzt relativ simpel aus, da es doch ausreicht zu zeigen, dass die Menge {1} offen und abgeschlossen ist um festzustellen, dass f(X) nicht zusammenhängend ist. Mein Problem ist jetzt aber folgendes: Die Menge {0} ist doch, so wie ich das sehe, nicht offen da sich keine [mm] \epsilon [/mm] - Kugel um die 0 legen lässt die in der Menge liegt. Damit lässt sich aber {0,1} auch nicht als Vereinigung zweier offener Mengen schreiben, was ja impliziert dass {0,1} doch zusammenhängend ist.
Ich wäre äußerst dankbar, wenn mir jemand sagen könnte was ich da noch nicht so genau begriffen hab.
Ich habe diese Frage in keinem anderen Forum gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:31 Sa 20.06.2009 | Autor: | pelzig |
Du musst auf [mm] $f(X)=\{0,1\}$ [/mm] die durch [mm] $\IR$ [/mm] induzierte Teilraumtopologie betrachten, d.h. [mm] $M\subset\{0,1\}$ [/mm] ist offen [mm] $\gdw$ [/mm] es gibt eine offene Menge [mm] $N\subset\IR$ [/mm] mit [mm] $M=N\cap\{0,1\}$. [/mm] Bezüglich dieser Topologie ist nämlich [mm] $\{0\}$ [/mm] offen und abgeschlossen.
Gruß, Robert
|
|
|
|