www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikZwei u. Würfel 2x Pasch
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Zwei u. Würfel 2x Pasch
Zwei u. Würfel 2x Pasch < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwei u. Würfel 2x Pasch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Do 05.12.2013
Autor: ChopSuey

Aufgabe
Zwei unterscheidbare Würfel werden n-mal hintereinander jeweils gleichzeitig geworfen. (...) Berechnen Sie die Wahrscheinlichkeit des folgenden Ereignisses:

A = "genau zweimal sind die beiden gewürfelten Zahlen gleich"

Hallo,

bei obiger Aufgabe hab' ich eine Frage zur Lösung bzw generell zur Wahrscheinlichkeit des Ereignisses.

Der Ergebnisraum ist $ [mm] \Omega [/mm] = [mm] \{1,...,6\}^{2n} [/mm] $, als $ [mm] \sigma-$Algebra [/mm] hab ich die Potenzmenge $ [mm] P(\Omega) [/mm] $ gewählt. Und das W-Maß ist die diskrete Gleichverteilung.

Nun ist $ [mm] |\Omega| [/mm] = [mm] 6^{2n} [/mm] $

Bei der Mächtigkeit der Menge $ A $ die das Ereignis $ A $ beschreibt habe ich allerdings Schwierigkeiten.

Was ich bisher weiß:  $ A $ besteht aus den Elementen $ [mm] \omega [/mm] = [mm] (\omega_{ij}) \in \Omega [/mm] $ mit $ [mm] \omega_{1j} [/mm] = [mm] \omega_{2j} [/mm] $ für zwei feste $ j' [mm] \in \{1,...,n\} [/mm] $ wobei $ i [mm] \in \{1,2\} [/mm] $ die Würfel und $ j [mm] \in \{1,..,n\} [/mm] $ den $ j-$ten Wurf beschreibt. Für alle anderen Würfe $ j [mm] \in \{1,...,n\} \setminus [/mm] J' = [mm] \{j'_{1}, j'_{2}\} [/mm] $ muss also gelten $ [mm] \omega_{1j} \not= \omega_{2j} [/mm] $

Und jetzt weiß ich nicht so recht, wie ich am besten mit diesen Informationen die Mächtigkeit ermitteln soll bzw kann. Jemand Tips für mich?

Freue mich über jede Hilfe!
Viele Grüße,
ChopSuey

        
Bezug
Zwei u. Würfel 2x Pasch: Binomialverteilung
Status: (Antwort) fertig Status 
Datum: 19:59 Do 05.12.2013
Autor: Diophant

Hallo,

meiner Ansicht nach ist das Stichwort hier Binomialverteilung. Wie du das dann hier notieren sollst, da kann ich dir nicht wirklich weiterhelfen.

Ich hätte allerdings den Ergebnisraum dazu aus Paaren aufgebaut.

Ich stelle malö auf teilweise beantwortet.

Grüße & schönen Abend, Diophant 

Bezug
        
Bezug
Zwei u. Würfel 2x Pasch: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Do 05.12.2013
Autor: Al-Chwarizmi


> Zwei unterscheidbare Würfel werden n-mal hintereinander
> jeweils gleichzeitig geworfen. (...) Berechnen Sie die
> Wahrscheinlichkeit des folgenden Ereignisses:
>  
> A = "genau zweimal sind die beiden gewürfelten Zahlen
> gleich"
>  Hallo,
>  
> bei obiger Aufgabe hab' ich eine Frage zur Lösung bzw
> generell zur Wahrscheinlichkeit des Ereignisses.
>  
> Der Ergebnisraum ist [mm]\Omega = \{1,...,6\}^{2n} [/mm], als
> [mm]\sigma-[/mm]Algebra hab ich die Potenzmenge [mm]P(\Omega)[/mm] gewählt.
> Und das W-Maß ist die diskrete Gleichverteilung.
>  
> Nun ist [mm]|\Omega| = 6^{2n}[/mm]
>  
> Bei der Mächtigkeit der Menge [mm]A[/mm] die das Ereignis [mm]A[/mm]
> beschreibt habe ich allerdings Schwierigkeiten.
>  
> Was ich bisher weiß:  [mm]A[/mm] besteht aus den Elementen [mm]\omega = (\omega_{ij}) \in \Omega[/mm]
> mit [mm]\omega_{1j} = \omega_{2j}[/mm] für zwei feste [mm]j' \in \{1,...,n\}[/mm]
> wobei [mm]i \in \{1,2\}[/mm] die Würfel und [mm]j \in \{1,..,n\}[/mm] den
> [mm]j-[/mm]ten Wurf beschreibt. Für alle anderen Würfe [mm]j \in \{1,...,n\} \setminus J' = \{j'_{1}, j'_{2}\}[/mm]
> muss also gelten [mm]\omega_{1j} \not= \omega_{2j}[/mm]
>
> Und jetzt weiß ich nicht so recht, wie ich am besten mit
> diesen Informationen die Mächtigkeit ermitteln soll bzw
> kann. Jemand Tips für mich?
>  
> Freue mich über jede Hilfe!


Hallo ChopSuey,

ich weiß zwar nicht mit Sicherheit, was genau du mit
"zwei unterscheidbaren Würfeln" meinst, nehme aber
mal der Einfachheit halber an, dass es sich um zwei
"normale" oder "faire" Spielwürfel handelt, deren Wurf-
ergebnisse gleichverteilt in [mm] $\{1,2,3,4,5,6\}$ [/mm] und voneinander
unabhängig sind.
Man kann sich dann leicht überlegen, dass die gesuchte
Wahrscheinlichkeit identisch sein muss mit der Wahr-
scheinlichkeit, dass man in n Würfen mit einem einzigen
Würfel exakt 2 mal eine 4 würfelt.
(oder irgendeine andere der möglichen Augenzahlen)

LG ,   Al-Chw.
würfelt

Bezug
        
Bezug
Zwei u. Würfel 2x Pasch: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Do 05.12.2013
Autor: luis52

Moin,

schreibe [mm] $\Omega={(x_1,\dots,x_n)\mid x_i=0 \text{ (kein Pasch) oder } x_i=1 \text{ (Pasch)}\}$. [/mm] Setze [mm] $P(\{\omega\})=\left(\dfrac{1}{6}\right)^{\sum x_i}\left(\dfrac{5}{6}\right)^{n-\sum x_i}$. [/mm] Die Loesung der Aufgabe laeuft dann auf Diophants Ansatz hinaus.
                

Bezug
                
Bezug
Zwei u. Würfel 2x Pasch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:08 Mo 09.12.2013
Autor: ChopSuey

Hallo Leute,

vielen Dank für Eure Hilfe! Ich denke, dass ich nun dahinter gestiegen bin. Ist schon eine ganze Weile her, dass ich Stochastik hatte.

Evtl. meld ich mich erneut bei Rückfragen.

Viele Grüße,
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]