www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikZweierkomplement
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Logik" - Zweierkomplement
Zweierkomplement < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zweierkomplement: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:14 Do 05.07.2007
Autor: Maiko

Hey!

Hätte mal eine kleine Frage bezüglich folgendes Problems:

Es geht um die Subtraktion 2er Binärzahlen, also A - B. Dies kann ich ja ganz leicht berechnen, in dem ich das Zweierkomplement von B bilde und dann A + B rechne.

Soweit so gut.

Das Zweierkomplement bilde ich, indem ich B negiere und zum Schluss eine 1 aufaddiere.

Nun habe ich im Hefter aber noch einen Ausdruck stehen, den ich mir nicht erklären kann:

B_schlange = [mm] 2^{n+1} [/mm] - B

sowie

Ergebnis = A - B + [mm] 2^{n+1} [/mm]

wobei [mm] 2^{n+1} [/mm] der Übertrag sein soll (laut eigener Randnotiz)!

Könnt ihr euch erklären, woher das [mm] 2^{n+1} [/mm] kommt? Wie hab ich das zu verstehen?

        
Bezug
Zweierkomplement: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Do 05.07.2007
Autor: Analytiker

Hi Maiko,

> Könnt ihr euch erklären, woher das [mm]2^{n+1}[/mm] kommt? Wie hab ich das zu verstehen?

Ich bin gerade dabei mich u.a. mit diesem Thema für meine Informatikklasur (die schon bald ansteht) vorzubereiten, und denke ich weiß einen Ansatz für deine Frage:

Nehmen wir als Beispiel ein 4-stelliges Zweierkomplement. Zum Beispiel:

0110 = +6

1.Schritt: die positive Zahl bitweise negieren -> 1001 und
2.Schritt: die +1 addieren -> 1010 = -6

Alternativ kann man auch sagen, das gilt: [mm] 2^{4} [/mm] - 6 = [mm] 10_{10} [/mm] = 1010 ->
also gilt negative Zahl = [mm] 2^{n} [/mm] - positive Zahl

Um nun die Brück zu deiner Frage zu schlagen, würde ich sagen handelt es sich bei deiner [mm] 2^{n + 1} [/mm] um eine im Gegensatz zu meiner eben ausgeführten Alternative nullbasierten Zählweise des Komplements. Also kann man allgemein sagen:

x > 0 und y > 0  ->  S = - x - y  ->  S = [mm] 2^{n} [/mm] - x + [mm] 2^{n} [/mm] - y = [mm] 2^{n + 1} [/mm] - x - y

Ich hoffe du bist nun ein Stück weiter?

Liebe Grüße
Analytiker
[lehrer]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]