www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisZweifaches Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Zweifaches Integral
Zweifaches Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zweifaches Integral: Wo liegt der Fehler?
Status: (Frage) beantwortet Status 
Datum: 10:23 Sa 19.02.2005
Autor: kuroiya

Hallo!

Es geht um die Berechnung des Integrals [mm] \bruch{V^{2}}{2h^{2}}\integral_B dp_{1}dp_{2}, [/mm] wobei B = { [mm] (p_{1},p_{2}) [/mm] : [mm] p_{1}^{2} [/mm] + [mm] p_{2}^{2} \le [/mm] 2mE }

Ich habe gerechnet:
[mm] \bruch{V^{2}}{2h^{2}}\integral_{0}^{\wurzel{2mE}}\integral_{-\wurzel{2mE - p_{2}^{2}}}^{\wurzel{2mE - p_{2}^{2}}}dp_{1}dp_{2} [/mm]
= [mm] \bruch{V^{2}}{h^{2}}\integral_{0}^{\wurzel{2mE}} \wurzel{2mE - p_{2}^{2}}dp_{2} [/mm]
= [mm] \bruch{V^{2}\wurzel{2mE}}{h^{2}}\integral_{0}^{\wurzel{2mE}} \wurzel{1 - \bruch{p_{2}^{2}}{2mE}}dp_{2} [/mm]

subst: [mm] \bruch{p_{2}^{2}}{2mE} [/mm] = [mm] \sin^{2}{t} \Rightarrow p_{2} [/mm] = [mm] \wurzel{2mE}\sin{t}, dp_{2} [/mm] = [mm] \wurzel{2mE}\cos{t} [/mm]

[mm] \bruch{V^{2}\wurzel{2mE}}{h^{2}}\integral_{0}^{\wurzel{2mE}} \wurzel{1 - \bruch{p_{2}^{2}}{2mE}}dp_{2} [/mm] = [mm] \bruch{V^{2}2mE}{h^{2}}\integral_{0}^{\bruch{\pi}{2}} cos^{2}(t)dt [/mm]
= [mm] \bruch{V^{2}2mE}{h^{2}} [\bruch{1}{2}(t [/mm] - [mm] \sin{t}\cos{t}]_{0}^{\bruch{\pi}{2}} [/mm] = [mm] \bruch{mEV^{2}\pi}{2h^{2}} [/mm]

nur leider sollte das Resultat [mm] \bruch{mEV^{2}\pi}{h^{2}} [/mm] lauten...

Habe ich die Integrationsgrenzen falsch angepasst, oder wo hab ich diese 2 verloren?

        
Bezug
Zweifaches Integral: Integrationsgrenzen
Status: (Antwort) fertig Status 
Datum: 11:16 Sa 19.02.2005
Autor: wysi


> Habe ich die Integrationsgrenzen falsch angepasst, oder wo
> hab ich diese 2 verloren?

Nein, du hast den Fehler ganz am Anfang gemacht, beim Setzen der Integrationsgrenzen.

Es sollte imo korrekt so heissen:

[mm]\bruch{V^{2}}{2h^{2}}\integral_{-\wurzel{2mE}}^{\wurzel{2mE}}\integral_{-\wurzel{2mE - p_{2}^{2}}}^{\wurzel{2mE - p_{2}^{2}}}dp_{1}dp_{2} [/mm]

Damit solltest du dann auf das korrekte Resultat kommen.

PS: Rechne doch mit Polarkoordinaten, das sieht viel einfacher aus.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]