www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisZwischenwertsatz am Polynom
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Zwischenwertsatz am Polynom
Zwischenwertsatz am Polynom < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zwischenwertsatz am Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Di 03.01.2006
Autor: Cybrina

Aufgabe
Zeigen Sie mit dem Zwischenwertsaty: Das Polynom p,
p(x) = [mm] a_{n}x^{n} [/mm] + ... + [mm] a_{2}x^{2} [/mm] + [mm] a_{1}x [/mm] + [mm] a_{0} [/mm] (x [mm] \in \IR), [/mm]
mit reellen Koeffizienten hat, wenn [mm] a_{n}*a_{0}<0 [/mm] gilt und der Grad [mm] n\ge2 [/mm] gerade ist, mindestens zwei verschiedene Nullstellen.

Ich glaube es soll helfen, wenn man davon ausgeht, dass [mm] a_{n} [/mm] positiv und [mm] a_{0} [/mm] negativ ist.
Es leuchtet mir ja auch ein, dass dem so sein muss. Nur wie beweise ich das mit dem ZWS?
Danke schonmal.

        
Bezug
Zwischenwertsatz am Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Di 03.01.2006
Autor: mathiash

Hallo Sandra,

Du muesstest bei Deiner Aufgabe beide Faelle [mm] a_n [/mm] >0, [mm] a_0 [/mm] <0 und [mm] a_n [/mm] <0, [mm] a_0 [/mm] >0
betrachten.

Versuch doch mal, unter den Gegebenheiten drei Zahlen [mm] x_0 [/mm] < [mm] x_1 [/mm] < [mm] x_2 [/mm]
mit entweder [mm] p(x_0) [/mm] < 0 , [mm] p(x_1) [/mm] >0 , [mm] p(x_2) [/mm] < 0 oder umgekehrt zu konstruieren.

Eines der x'e, zB [mm] x_1, [/mm] koenntest Du ja auf 0 setzen, dadurch bringst Du die Bedingung an das [mm] a_0 [/mm]
ins Spiel. Die anderen beiden Werte wuerde ich  dem Betrag nach hinreichend gross waehlen.

Viele Gruesse und viel Erfolg,

Mathias

Bezug
        
Bezug
Zwischenwertsatz am Polynom: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:33 Mi 04.01.2006
Autor: Franzie

Hallo Leute! Danke erstmal für den Link, so ähnliche Gedanken hatte ich auch schon.
Hab trotzdem noch ein paar Unklarheiten. Also im Link stand doch, ich soll drei Zahlen so konstruieren, dass x1 <x2 <x3. Muss ich das nicht allgemein beweisen, nicht durch Beispiele?
Also wenn ich jetzt x1=0 setze,erfüllen x1 un x3 jeweils die Bedingung  
[mm] a_{n}<0 [/mm] oder [mm] a_{n} [/mm] >0. Damit ist jetzt p(x1) <0, p(x2) >0 und p(x3)<0. Daher hab ich mindestens zwei Nullstellen, nämlich in den Intervallen [x1,x2] und [x2,x3]. Ist das so schon nachvollziehbar für Dritte oder fehlt noch ein Gedankengang?

liebe Grüße

Bezug
                
Bezug
Zwischenwertsatz am Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Mi 04.01.2006
Autor: felixf


> Hallo Leute! Danke erstmal für den Link, so ähnliche
> Gedanken hatte ich auch schon.
>  Hab trotzdem noch ein paar Unklarheiten. Also im Link
> stand doch, ich soll drei Zahlen so konstruieren, dass x1
> <x2 <x3

... und mit weiteren Bedingungen. Sonst waers ja einfach :)

> . Muss ich das nicht allgemein beweisen, nicht durch
> Beispiele?

Ja, du musst das allgemein angeben. Jedoch kannst du trotzdem ohne Einschraenkung x2 = 0 setzen. Und dann musst du begruenden, warum es x1 < x2 und x3 > x2 gibt so, dass f(x1) und f(x3) ein anderes Vorzeichen wie f(x2) haben. Dazu rechne doch erstmal f(x2) = f(0) aus, und schau dir den Grenzwert von f(x) fuer $x [mm] \to \infty$ [/mm] und $x [mm] \to -\infty$ [/mm] an.

>  Also wenn ich jetzt x1=0 setze,erfüllen x1 un x3 jeweils
> die Bedingung  
> [mm]a_{n}<0[/mm] oder [mm]a_{n}[/mm] >0. Damit ist jetzt p(x1) <0, p(x2) >0
> und p(x3)<0.

Hae? Woher hast du x1 und x3 jetzt, und warum haben x1 und x3 irgendetwas mit [mm] $a_n<0$/$a_n>0$ [/mm] zu tun?!

> Daher hab ich mindestens zwei Nullstellen,
> nämlich in den Intervallen [x1,x2] und [x2,x3]. Ist das so

Sogar genauer: in den Intervallen ]x1,x2[ und ]x2,x3[.

> schon nachvollziehbar für Dritte oder fehlt noch ein
> Gedankengang?



>  
> liebe Grüße


Bezug
                        
Bezug
Zwischenwertsatz am Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:03 Mi 04.01.2006
Autor: felixf

Hallo Franzie! Ich hab grad dein anderes Posting gelesen (hier) und hab dazu noch einen Kommentar:

Du schreibst, dass [mm] $\lim_{x\to\infty} [/mm] P(x) = [mm] \infty$ [/mm] und [mm] $\lim_{x\to-\infty} [/mm] P(x) = [mm] -\infty$ [/mm] ist falls [mm] $a_n [/mm] > 0$: das ist jedoch falsch! Das gilt genau dann, wenn $n$ ungerade ist, aber in diese Aufgabe ist $n$ gerade!

LG Felix


Bezug
                        
Bezug
Zwischenwertsatz am Polynom: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:58 Do 05.01.2006
Autor: Franzie

Danke für die Hilfe! Den Rest werd ich jetzt allein zusammenbasteln.
Hat mir echt weitergeholfen.

liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]