Zyklische Untergruppe -Fermat? < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 09:48 So 17.04.2005 | Autor: | praetorA |
Ich soll unter den Vorraussetzungen:
* G ist eine endliche Gruppe mit neurtalem Element 1 und g aus G
* <g> sei die zyklische Untergruppe mit Erzeuger g , also [mm] :={1,g,g^2,g^3,...}
[/mm]
(anmerkung [mm] g^2=g \circ [/mm] g usw.)
folgendes zeigen:
(1) <g> ist tatsächlich eine Gruppe.
(2) [mm] g^{|G|}=1 [/mm] ( |.| := Anzahl der Elemente in G )
(1) ist recht trivial, da man nur zeigen braucht dass es ein natürliches n gibt, sodass [mm] g^n=1. [/mm] Das wiederum ist leicht, weil G endlich war und <g> [mm] \subseteq [/mm] G gilt.
(2) bei 2. ist auch noch trivial, dass [mm] g^{||}=1 [/mm] gelten muss,
(weil sonst widerspruch zur Anzahl der Elemente von <g>, ich habe k:=min{n aus [mm] \IN [/mm] | [mm] g^n=1} [/mm] gewählt)
Aber nun? Man müsste zeigen, dass |<g>| ein Teiler von |G| ist, das erinnert an den Satz von Lagrange. Also ist alles klar, wenn G abelsch oder <g> ein Normalteiler ist. Aber sonst?
Bitte um Hilfe!
Lg, Praetor
(Habe diese Frage in keinen anderen Foren etc, gepostet)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:18 So 17.04.2005 | Autor: | pjoas |
Also Lagrange ist exakt das richtige Stichwort, da die Gruppenordnung einer Untergruppe die der Gruppe teilen muss.
Und der Beweis der Lagrange'schen Aussage hat keine Anforderungen an Normalteiler, sondern nur an die Endlichkeit.
Sei G endliche Gruppe, U UG von G, dann gilt: $ord(G)=[G:H]ord(H)$
Solltest du den nicht benutzen dürfen, dann gib mir noch ein wenig Zeit, ich suche gerade eine Alternative!
Gruß, PJ
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:43 So 17.04.2005 | Autor: | pjoas |
Also der Beweis des Satzes von Lagrange geht immer über die Nebenklassenbildung, die G bezüglich H disjunkt zerlegt:
Sei G endliche Gruppe, H Untergruppe von G. Für jedes [mm] $a,b\inG$ [/mm] gilt: [mm] $Ha\not= [/mm] Hb [mm] \Rightarrow [/mm] Ha [mm] \cap [/mm] Hb = [mm] \emptyset$
[/mm]
Zum Beweis hiervon seien [mm] $a,b\in [/mm] G$ mit [mm] $Ha\capHb\not=\emptyset$. [/mm] Sei dann [mm] $c\in Ha\cap [/mm] Hb$. Dann existiert ein [mm] $h\inH$ [/mm] mit $c=ha$. Für alle [mm] $h'\in [/mm] H$ gilt also $h'c=h'ha = (h'h)a [mm] \in [/mm] HA$, folglich [mm] $Hc\subset [/mm] Ha$. Und für [mm] $d\in [/mm] Ha$,$d=h''a$, hat man [mm] $d=h''a=h''h^{-1}ha [/mm] = [mm] (h''h^{-1})(ha)=h'''c\in [/mm] Hc$, weil [mm] $h'''=h''h^{-1} \in [/mm] H$. Insgesamt erhält man $Ha=Hc$. Analog folgt $Hb=Hc$, also $Ha=Hb$ im Widerspruch zur Voraussetzung...
Die zweite Aussage, die du zum Beweis von Lagrange brauchst ist, daß die Größe der entsprechenden Nebenklassen gleich der Ordnung der Untergruppe ist. Dies erhält man über:
Sei G eine Gruppe, H eine Untergruppe von G.
Für jedes [mm] $a\in [/mm] G$ ist die Abbildung [mm] $\mu_{a}:H \to [/mm] Ha, [mm] \mu_{a}(h)=ha$, [/mm] bijektiv.
Surjektivität folgt aus der Konstruktion und die Injektivität aus der Kürzungsregel.
... zum Beweis von Lagrange:
Seien [mm] $R_1,\dots,R_m, [/mm] m=[G:H] $ die verschiedenen Rechtsklassen von G bezüglich H. Jedes [mm] $g\in [/mm] G$ gehört zu einer Rechtsklasse, nämlich zu $Hg$. Also ist
$G= [mm] \bigcup_{i=1}^{m}R_{i}$. [/mm] Diese sind nach obigen Aussagen paarweise disjunkt und es [mm] gilt:$|R_{i}|=H$ [/mm] für alle i. Also ist $|G|=m|H|$.
Gruß, Patrick
|
|
|
|