www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Zylinder
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mathe Klassen 8-10" - Zylinder
Zylinder < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zylinder: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:20 Fr 17.04.2009
Autor: Blackbull

Aufgabe
Ein Blatt Papier im DIN-A4-Format (l=29,7 cm, b=21,0 cm) wird zur Mantelfläche eines Zylinders (h=b) geformt.
a) Wie groß sind der Radius und Inhalt der Oberfläche des Körpers?
b) Um den Zylinder wird vom Punkt A zum Punkt B spiralförmig eine dünne Schnur gespannt. Wie lang muss diese Schnur sein? (A ist auf der linke Seite unten, B auf der linken Seite oben vom Zylinder)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



So ich hab hier mal einen Lösungsvorschlag, bin mir aber nicht ganz sicher.

a) M= [mm] 2r\pi\ [/mm] h
A(Papier) = M -> l x h = A -> l = [mm] 2r\pi\ [/mm] -> r ~ 4,73

O = M + [mm] 2r^2\pi\ [/mm] = 29,7 x 21 + [mm] 2x(4,73)^2\pi\ [/mm] = 623,7 + 140,57 = 764.27

b) U(Kreis) = [mm] 2r\pi\ [/mm] = 29.72

l(Schnurr) = U + h = 29,72 + 21,0 = 50,72

Könnt ihr mir sagen, ob ich die Aufgabe richtig gelöst habe??? Bitte um Antwort. DAnke schön. THX




        
Bezug
Zylinder: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Fr 17.04.2009
Autor: mmhkt

Guten Abend,

> Ein Blatt Papier im DIN-A4-Format (l=29,7 cm, b=21,0 cm)
> wird zur Mantelfläche eines Zylinders (h=b) geformt.
>  a) Wie groß sind der Radius und Inhalt der Oberfläche des
> Körpers?
>  b) Um den Zylinder wird vom Punkt A zum Punkt B
> spiralförmig eine dünne Schnur gespannt. Wie lang muss
> diese Schnur sein? (A ist auf der linke Seite unten, B auf
> der linken Seite oben vom Zylinder)
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
>
> So ich hab hier mal einen Lösungsvorschlag, bin mir aber
> nicht ganz sicher.
>  
> a) M= [mm]2r\pi\[/mm] h
>  A(Papier) = M -> l x h = A -> l = [mm]2r\pi\[/mm] -> r ~ 4,73

Richtig, denn die Länge des Blattes (29,7cm) ist gleich dem Umfang.

>  
> O = M + [mm]2r^2\pi\[/mm] = 29,7 x 21 + [mm]2x(4,73)^2\pi\[/mm] = 623,7 +
> 140,57 = 764.27

Wenn man die beiden Kreisflächen Deckel und Boden mitrechnet, ist das korrekt.
Es steht allerdings nur etwas von einem DIN A4 Blatt in der Aufgabe, von Deckel und Boden ist keine Rede.
Es könnte also sein, dass jemand einwendet, dass nur die Mantelfläche zu berechnen sei. Die hast Du aber auch korrekt ermittelt.

>  
> b) U(Kreis) = [mm]2r\pi\[/mm] = 29.72
>  
> l(Schnurr) = U + h = 29,72 + 21,0 = 50,72

Stelle dir das Blatt im flachen Zustand vor. Du bezeichnest die linke untere Ecke mit A und die rechte obere Ecke mit B.
Nun drehst Du das Blatt zum Zylinder. Die Punkte A und B liegen jetzt genau übereinander wie in der Aufgabe beschrieben.
Wenn Du also eine Linie oder eine Schnur vom Punkt A zum Punkt B führen sollst: welcher Linie entspricht das auf dem flachen Blatt?

Schönen Gruß
mmhkt


Bezug
                
Bezug
Zylinder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:44 Fr 17.04.2009
Autor: Blackbull

OK du hast Recht von Deckel und Boden steht nichts dabei, also muss ich nur die Mantelfläche berechnen, also ist 623,7 das Ergebnis.

zu b) Jetzt hab ich das verstanden. Die Schnurlänge ist einfach die Diagonale vom Papier,oder?? Also ist die [mm] L(schnur)^2= 29,7^2 [/mm] + [mm] 21^2 [/mm] -> L = 36,37
Stimmt das???
Danke für die schnelle Antwort. THX

Bezug
                        
Bezug
Zylinder: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Fr 17.04.2009
Autor: mmhkt

Guten Abend zum zweiten,

wird zur Mantelfläche eines Zylinders (h=b) geformt.
a) Wie groß sind der Radius und Inhalt der Oberfläche des Körpers?


> OK du hast Recht von Deckel und Boden steht nichts dabei,
> also muss ich nur die Mantelfläche berechnen, also ist
> 623,7 das Ergebnis.

Richtig gerechent hast Du beides - kommt jetzt nur noch darauf an, was in eurem Unterricht als richtig angesehen werden wird. Ohne Diskussionen geht das möglicherweise nicht ab.

Ich bin mir da nicht sicher - nach dem Aufgabentext sind zwei Begriffe gegeben: das Blatt Papier wird zur "Mantelfläche" gerollt.
Gefragt wird dann nach der "Oberfläche des Körpers".

Ich erinnere mich daran, dass bei solchen Formulierungen auch schon zu meiner Schulzeit immer wieder z.T. hitzige Diskussionen darüber geführt wurden, wie denn das nun zu verstehen sei.
  

> zu b) Jetzt hab ich das verstanden. Die Schnurlänge ist
> einfach die Diagonale vom Papier,oder?? Also ist die
> [mm]L(schnur)^2= 29,7^2[/mm] + [mm]21^2[/mm] -> L = 36,37
> Stimmt das???
>  Danke für die schnelle Antwort. THX

So sollte sich das darstellen, wenn Du ein solches DIN A4 Blatt nimmst, die Diagonale entsprechend einzeichnest und das Blatt dann rollst.

Bei solchen Aufgaben ist es manchmal am wirkungsvollsten, sich die Aufgabenstellung im wahrsten Sinne des Wortes vor Augen zu führen - also ein Bild davon - und "begreiflich", also wirklich zum anfassen, zu machen.

Schönen Abend
mmhkt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]