ZylinderVolumen Polarform < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:40 Di 18.11.2014 | Autor: | Pac |
Aufgabe | Drei Mengen im [mm] R^3
[/mm]
Z :={(x,y,z) [mm] \in R^3 [/mm] | (x-2)²+y² [mm] \le [/mm] 4}
E1:= {(x,y,z) [mm] \in R^3 [/mm] | z/5 - x/4 [mm] \le [/mm] 1}
E2:= {(x,y,z) [mm] \in R^3 [/mm] | 4z/5 - y/2 [mm] \ge [/mm] 1}
Diese bilden die Menge M := Z [mm] \cap [/mm] E1 [mm] \cap [/mm] E2
a) Bestimmen sie das Volumen und die Oberfläche von M durch Integration. |
Wunderschönen guten Abend erstmal.
Bin neu hier und hoffe nicht jetzt schon gröbere Fehler getan zu haben.
Hoffe die Kategorie richtig gewählt zu haben.
Ohne groß Zeit zu verschwenden.
Wir haben hier 3 Mengen vorgelegt bekommen und müssen diese nun zu einer Menge M zusammenfassen. Ehrlich gesagt scheitere ich zunächst schon dort.
Z ist ja scheinbar ein Kreis mit Radius 2 um zwei auf x verschoben.
Nun vermute ich, dass Z ein unendlicher Zylinder ist, da z uneingeschränkt ist.
Daraus schließe ich, dass die beiden anderen den Zylinder vermutlich irgendwie beschränken werden...
Tjaaa wie?
Aus Z kann ich weiterhin erkennen, dass für x und y folgende Intervalle gelten
x := [0;4]
y := [-2;2]
E1 und E2 jeweils nach z umgestellt und die Grenzen eingesetzt.
Ich erhalte also bei E1(x1) = z<5 und E1(x2) = z < 10
Bei E2(y1) = z> 0 und E2(y2) = z>10/4
Ich könnte jetzt eiskalt den kleinsten und größten Wert nehmen und erhalte damit
z := [0;10]
Selbst wenn das nun stimmen würde... was wäre mein M?
Habe ich nur Blödsinn gerechnet bislang :s?
Bin bissl verwirrt
Sollten die Grenzen so stimmen, dann würde ich annehmen einen Zylinder zu haben mit einer KreisGrundfläche mit Radius 2 und einer Höhe von 10.
Mit Polarkoordinaten kenne ich mich noch nicht besonders gut aus, doch ein Zylinder wird ja vollständig beschrieben mit einem RADIUS, einem WINKEL und einer HÖHE. Das dürfte stimmen?
Im Stil von:
x = r * [mm] cos(\Phi)
[/mm]
y = r * [mm] sin(\Phi)
[/mm]
z = z
Dies dann in eine Jaccobi Matrix mittels Partieller Ableitung überführen (oder?)
Determinante Bestimmen
Und dann 3 Integrale über die wandernden Werte.... :D?
Vielen Dank, falls sich jemand die Mühe macht das alles durchzulesen^^
(Hab sogar versucht die Notation halbwegs annehmbar zu gestalten ;) )
(PS: Ich fühle mich iwie schlecht und schuldig online die armen Leute zu belästigen, die Zeit für mich opfern. Danke nochmals :* )
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:38 Di 18.11.2014 | Autor: | chrisno |
Ich mache mal den Anfang:
> Wunderschönen guten Abend erstmal.
Danke, gleichfalls und
> Bin neu hier und hoffe nicht jetzt schon gröbere Fehler
> getan zu haben.
Sicher nicht, aber als Vorwarnung: schreibe die Potenzen nicht mit den fertig auf der Tastatur liegenden Zeichen, nimm auch dafür den Formeleditor.
> Hoffe die Kategorie richtig gewählt zu haben.
Passt schon
> ....
> Z ist ja scheinbar ein Kreis mit Radius 2 um zwei auf x
> verschoben.
> Nun vermute ich, dass Z ein unendlicher Zylinder ist, da z
> uneingeschränkt ist.
> Daraus schließe ich, dass die beiden anderen den Zylinder
> vermutlich irgendwie beschränken werden...
So weit so gut.
> Tjaaa wie?
Da steht "E1:" das ist schon ein deutlicher Hinweis, aber ich will Dich selbst darauf kommen lassen.
Beginne mit [mm] $\br{z}{5}-\br{x}{4}= [/mm] 1$. Falls Du das nicht sofort als Geradengleichung erkennst, forme um: $z = [mm] \br{5}{4}x [/mm] + 5$ Diese Gerade zerlegt die x-z-Ebene in zwei Teile. In der Menge mitspielen darf nur, wer unterhalb dieser Geraden liegt. y kommt nicht vor. Du kannst also für jeden Wert von y diese Gerade einzeichnen, sie also in y-Richtung beliebig verschieben. Was kommt dann heraus?
Analog gehst Du für E2 vor.
Danach kann man überlegen, ob es sinnvoll ist, auf andere Koordinaten umzusteigen.
|
|
|
|