www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieZylinderkoordinaten
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integrationstheorie" - Zylinderkoordinaten
Zylinderkoordinaten < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zylinderkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:45 Di 20.09.2011
Autor: TheBozz-mismo

Aufgabe
Berechnen Sie das Volumen des Kegels [mm] K=({(x,y,z);2\wurzel{x^2+y^2} \le z \le 1}) [/mm]

Ich möchte diese Aufgabe mit Zylinderkoordinaten lösen.
Ich hab bei der Umtransformierung immer Probleme, die neuen Integralgrenzen zu bestimmen.

Also ich würde so vorgehen:
Es gibt r= [mm] \wurzel{x^2+y^2} [/mm] und
x=r*cos(e)
y=r*sin(e)
z=z
Die neuen Koordinaten lauten (r,e,z)
Das Integral lautet dann
[mm] \integral_{K}^{}{1 d(x,y,z)}=\integral_{z=?}^{?}\integral_{r=?}^{?}\integral_{e=}^{?}{de*r*dr*dz} [/mm]

Nun müssen nur noch die Grenzen bestimmt werden.
Für r steht ja da 2r [mm] \le [/mm] z, also 0 [mm] \le [/mm] r [mm] \le \bruch{z}{2} [/mm]

Für z gilt 0 [mm] \le [/mm] z [mm] \le [/mm] 1

Wie komme ich an die Grenzen von e?
Ich weiß, dass [mm] e=arctan(\bruch{y}{x}) [/mm]

Vielen Dank für die Hilfe

TheBozz-mismo

        
Bezug
Zylinderkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Di 20.09.2011
Autor: rainerS

Hallo!

> Berechnen Sie das Volumen des Kegels
> [mm]K=({(x,y,z);2\wurzel{x^2+y^2} \le z \le 1})[/mm]
>  Ich möchte
> diese Aufgabe mit Zylinderkoordinaten lösen.
>  Ich hab bei der Umtransformierung immer Probleme, die
> neuen Integralgrenzen zu bestimmen.
>  
> Also ich würde so vorgehen:
>  Es gibt r= [mm]\wurzel{x^2+y^2}[/mm] und
>  x=r*cos(e)
>  y=r*sin(e)
>  z=z
>  Die neuen Koordinaten lauten (r,e,z)
>  Das Integral lautet dann
>  [mm]\integral_{K}^{}{1 d(x,y,z)}=\integral_{z=?}^{?}\integral_{r=?}^{?}\integral_{e=}^{?}{de*r*dr*dz}[/mm]
>  
> Nun müssen nur noch die Grenzen bestimmt werden.
>  Für r steht ja da 2r [mm]\le[/mm] z, also 0 [mm]\le[/mm] r [mm]\le \bruch{z}{2}[/mm]
>  
> Für z gilt 0 [mm]\le[/mm] z [mm]\le[/mm] 1
>  
> Wie komme ich an die Grenzen von e?
>  Ich weiß, dass [mm]e=arctan(\bruch{y}{x})[/mm]

Eher [mm] $\bruch{y}{x} [/mm] = [mm] \tan [/mm] e$, da der Winkelbereich der Zylinderkoordinaten [mm] ($0\dots 2\pi$) [/mm] ein anderer ist als der Wertebereich des [mm] $\arctan$. [/mm]

Dein Volumen ist rotationssymmetrisch um die z-Achse, also wird über den vollen Winkelbereich von 0 bis [mm] $2\pi$ [/mm] integriert.

  Viele Grüße
    Rainer

Bezug
                
Bezug
Zylinderkoordinaten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:01 Fr 23.09.2011
Autor: TheBozz-mismo

Vielen Dank für deine Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]