www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogikZz: <= ist part. Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Logik" - Zz: <= ist part. Ordnung
Zz: <= ist part. Ordnung < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zz: <= ist part. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Di 09.11.2010
Autor: Manu87

Aufgabe
[]Aufgabe

Hi Vorhilfler,

ich hab wieder keine Ahnung und es nervt mich langsam, dass die Sachen die wir erledigen müssen nich einmal in Vorlesung dran kommen.

Ich weiß:

-$X$ in der booleschen Algebra ist $X = [mm] \{ 0, 1\}$ [/mm] (Stimmt das überhaupt?)
-$sup(X)=1$ und $inf(X)=0$
-Eine Partielle Ordnung ist transitiv reflexix und antisymmetrisch.

So und hier endet es auch wieder. Könnt ihr mir weiterhelfen? Ich denke ich muss halt zeigen, dass [mm] "\leq" [/mm] oben genannte Eigenschaften hat.



        
Bezug
Zz: <= ist part. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Di 09.11.2010
Autor: meili

Hallo Manu,
>
> []Aufgabe

(Schöner wäre es, wenn hier wirklich die Aufgabe stehen würde, denn man könnte dann einfacher zitieren.)

>  Hi Vorhilfler,
>  
> ich hab wieder keine Ahnung und es nervt mich langsam, dass
> die Sachen die wir erledigen müssen nich einmal in
> Vorlesung dran kommen.

Ärgerlich - als Einstiegslektüre empfehle ich []Boolesche Algebra bei wikipedia.

>  
> Ich weiß:
>  
> -[mm]X[/mm] in der booleschen Algebra ist [mm]X = \{ 0, 1\}[/mm] (Stimmt das
> überhaupt?)

Nein, es gibt zwar ein Beispiel einer booleschen Algebra mit [mm]X = \{ 0, 1\}[/mm], aber X kann auch eine andere Menge sein, z.B. Potenzmenge einer Menge. X muss aber ein "1" und ein "0" Element enthalten.

>  -[mm]sup(X)=1[/mm] und [mm]inf(X)=0[/mm]

>  -Eine Partielle Ordnung ist transitiv reflexix und
> antisymmetrisch.

[ok]

>  
> So und hier endet es auch wieder. Könnt ihr mir
> weiterhelfen? Ich denke ich muss halt zeigen, dass [mm]"\leq"[/mm]
> oben genannte Eigenschaften hat.

Ja, mit Hilfe der Defintion von [mm]"\leq"[/mm] und den Eigenschaften von
[mm] "$\sqcap$" [/mm] und [mm] "$\sqcup$" [/mm] (was [mm] "$\wedge$" [/mm] und [mm] "$\vee$" [/mm] entspricht).

>  
>  

Gruß
meili

Bezug
                
Bezug
Zz: <= ist part. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:09 Di 09.11.2010
Autor: Manu87


> > So und hier endet es auch wieder. Könnt ihr mir
> > weiterhelfen? Ich denke ich muss halt zeigen, dass [mm]"\leq"[/mm]
> > oben genannte Eigenschaften hat.
>  Ja, mit Hilfe der Defintion von [mm]"\leq"[/mm] und den
> Eigenschaften von
>  "[mm]\sqcap[/mm]" und "[mm]\sqcup[/mm]" (was "[mm]\wedge[/mm]" und "[mm]\vee[/mm]"
> entspricht).

Okay...

[mm] $\forall [/mm] a, b [mm] \in [/mm] X : a [mm] \leq [/mm] b [mm] \gdw [/mm] a [mm] \sqcup [/mm] b = b$ bzw. $a [mm] \leq [/mm] b [mm] \gdw [/mm] a [mm] \sqcap [/mm] b = a$

aber das bringt mich weing wieter... sag mir mal bitte was ich tun muss.

Bezug
                        
Bezug
Zz: <= ist part. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:33 Di 09.11.2010
Autor: meili

Hallo,
> > > So und hier endet es auch wieder. Könnt ihr mir
> > > weiterhelfen? Ich denke ich muss halt zeigen, dass [mm]"\leq"[/mm]
> > > oben genannte Eigenschaften hat.
>  >  Ja, mit Hilfe der Defintion von [mm]"\leq"[/mm] und den
> > Eigenschaften von
>  >  "[mm]\sqcap[/mm]" und "[mm]\sqcup[/mm]" (was "[mm]\wedge[/mm]" und "[mm]\vee[/mm]"
> > entspricht).
>  
> Okay...
>  
> [mm]\forall a, b \in X : a \leq b \gdw a \sqcup b = b[/mm] bzw. [mm]a \leq b \gdw a \sqcap b = a[/mm]
>  
> aber das bringt mich weing wieter... sag mir mal bitte was
> ich tun muss.

z.z.: [mm] "$\le$" [/mm] ist eine partielle Ordnung auf X
[mm] $\gdw$ "$\le$" [/mm] ist transitiv, reflexiv und antisymmetrisch
[mm] $\gdw$ ($\forall$ [/mm] a,b,c [mm] $\in$ [/mm] X: a [mm] $\le$ [/mm] b [mm] $\le$ [/mm] c  [mm] $\Rightarrow$ [/mm] a [mm] $\le$ [/mm] c) [mm] $\wedge$ ($\forall$ [/mm] a [mm] $\in$ [/mm] X: a [mm] $\le$ [/mm] a) [mm] $\wedge$ ($\forall$ [/mm] a,b [mm] $\in$ [/mm] X: (a [mm] $\le$ [/mm] b) [mm] $\wedge$ [/mm] (b [mm] $\le$ [/mm] a)  [mm] $\Rightarrow$ [/mm] a = b)

Gruß
meili

Bezug
                                
Bezug
Zz: <= ist part. Ordnung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 23:04 Di 09.11.2010
Autor: Manu87

Aufgabe
[]Aufgabe

okayy gecheckt^^

im endeffekt hats dieses []Buch gebracht. Wenn ich Zeit habe werde ich die Lösung posten und einige Verständnisfragen stellen. Aber zuerst muss ich das Blatt fertig bekommen. Danke noch mal meili.


Ich habe nun bewiesen, dass [mm] \leq [/mm] eine partielle Ordnung auf X ist. Wie komme ich nun auf das Max- bzw Minimum??


Und was bedeutet nun das inf und sup. Die Wiki Def. hab ich gelesen. Kleinste obere Schranke und umgekehrt. Nur wie zeige ich das $ a [mm] \sqcap [/mm] b = [mm] inf\{a,b\}$ [/mm] bzw $ a [mm] \sqcup [/mm] b = [mm] sup\{a,b\}$ [/mm] gilt?

Bezug
                                        
Bezug
Zz: <= ist part. Ordnung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:28 Mi 10.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]