www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperabelsch und nicht-isomorph?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gruppe, Ring, Körper" - abelsch und nicht-isomorph?
abelsch und nicht-isomorph? < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abelsch und nicht-isomorph?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mi 28.10.2009
Autor: muesmues

Aufgabe
Zeigen Sie: Jede Gruppe der Ordnung 4 ist abelsch. Es gibt genau zwei nicht-isomorphe Gruppen der Ordnung 4.

Ich dacht dass nur [mm] A_1 [/mm] und [mm] A_2 [/mm] abelsch sind. und [mm] A_5 [/mm] die kleinste nicht abelsche einfache Gruppe ist.
Was ist denn dann [mm] A_4? [/mm]

Was hat das Ganze mit nicht-isomorph zu tun???

Ich hoffe ihr könnt mir helfen!!!

Danke schon mal!

grüße

        
Bezug
abelsch und nicht-isomorph?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Mi 28.10.2009
Autor: Gonozal_IX

Hallo muesmus,

du sollst zeigen: Sei G eine Gruppe und $|G| = 4$, dass dann G abelsch ist.

G hat also 4 verschiedene Elemente, hat also die Form:

$|G| = [mm] \{e,a,b,c\}$ [/mm]

wobei e das neutrale Element der Gruppe darstellt.
Zeige nun, dass G abelsch ist, überlege dir dazu, was [mm] $a\circ [/mm] b$ sein kann und wieso die Verknüpfung dann kommutativ sein muss.

Du wirst sehen, dass es für [mm] $a\circ [/mm] b$ genau 2 Fälle gibt, damit erhälst du 2 nicht isomorphe Gruppen (warum?).

Zeige dann, dass eine neue Gruppe H mit $|H| = 4$ entweder isomorph zum einen Fall oder isomorph zum anderen Fall ist, denn dann hast du ja gezeigt, dass es nur diese 2 Fälle gibt.

Das ergibt sich dann aber ganz leicht aus deinen Vorüberlegungen.

MFG,
Gono.

Bezug
                
Bezug
abelsch und nicht-isomorph?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Sa 31.10.2009
Autor: chrissi2709

also, dass jede Gruppe der Ordnung 4 abelsch ist, weiß ich, wie ich das zeige, aber das mit dem nicht-isomorph ist mir nicht so ganz klar;
was genau zeige ich denn, wenn ich zeigen will, dass es nicht-isomorphe Gruppen der Ordnung vier gibt?

Bezug
                        
Bezug
abelsch und nicht-isomorph?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Sa 31.10.2009
Autor: Gonozal_IX

Zeige, dass es keinen Isomorphismus zwischen beiden Gruppen gibt, das ist aber nicht sonderlich schwer, da jeder Isomorphismus insbesondere ein Homomorphismus ist.

Nun zeige, dass es diesen nicht geben kann, indem du annimmst, es gäbe einen und zeigst, dass es keiner ist.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]