www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, Körperabelsche Gruppen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - abelsche Gruppen
abelsche Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

abelsche Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Mo 23.12.2013
Autor: ElizabethBalotelli

Aufgabe
Seien G und H abelsche Gruppen mit Mächtigkeit G= Mächtigkeit H [mm] \in \IP. [/mm] Zeige G [mm] \cong [/mm] H.

Kann mir erst mal jemand erklären, wass das [mm] \in \IP [/mm] bedeutet? ALso wenn die Mächtigkeit eine Primzahl ist?
Und wenn ja, wie würde man danach vorgehen? Mit Induktionsverfahren, kann man sowas ja nicht beweisen....

Vielen Dank für Ratschläge =)

        
Bezug
abelsche Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Mo 23.12.2013
Autor: UniversellesObjekt

Hallo Elizabeth,

Ja, es ist gemeint, dass die Ordnung prim ist. Die Voraussetzung der Kommutativität ist übrigens nicht nötig. Insbesondere ist die Ordnung größer als 1. Wähle ein nichttriviales Element in G bzw H. Welche Ordnung hat die hiervon erzeugte Untergruppe?

Andersrum kann man auch so an das Problem gehen: Welche Gruppe der Ordnung p kennst du denn schon mal sicher? Wenn die Aufgabenstellung stimmt, musst du also zeigen, dass jede Gruppe diese Ordnung von derselben Struktur ist.

Insbesondere folgt also die Kommutativität aus den restlichen Voraussetzungen.

Liebe Grüße,
UniversellesObjekt

Bezug
        
Bezug
abelsche Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:24 Mo 23.12.2013
Autor: Marcel

Hallo,

es wurde ja eigentlich schon gesagt, aber:

    [mm] $\IP:=\{p \in \IN:\;\; p \text{ ist Primzahl}\}\,,$ [/mm]

wobei man hier "Primzahl=Zahl ist prim" oder "Primzahl=Zahl ist irreduzibel"
benutzen kann (die Begriffe sind hier äquivalent).

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]